Suppr超能文献

磷酸化蛋白质组学揭示了保守的运动刺激信号和 AMPK 对储存操纵的钙内流的调节作用。

Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry.

机构信息

Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.

Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Vic, Australia.

出版信息

EMBO J. 2019 Dec 16;38(24):e102578. doi: 10.15252/embj.2019102578. Epub 2019 Aug 5.

Abstract

Exercise stimulates cellular and physiological adaptations that are associated with widespread health benefits. To uncover conserved protein phosphorylation events underlying this adaptive response, we performed mass spectrometry-based phosphoproteomic analyses of skeletal muscle from two widely used rodent models: treadmill running in mice and in situ muscle contraction in rats. We overlaid these phosphoproteomic signatures with cycling in humans to identify common cross-species phosphosite responses, as well as unique model-specific regulation. We identified > 22,000 phosphosites, revealing orthologous protein phosphorylation and overlapping signaling pathways regulated by exercise. This included two conserved phosphosites on stromal interaction molecule 1 (STIM1), which we validate as AMPK substrates. Furthermore, we demonstrate that AMPK-mediated phosphorylation of STIM1 negatively regulates store-operated calcium entry, and this is beneficial for exercise in Drosophila. This integrated cross-species resource of exercise-regulated signaling in human, mouse, and rat skeletal muscle has uncovered conserved networks and unraveled crosstalk between AMPK and intracellular calcium flux.

摘要

运动刺激细胞和生理适应,与广泛的健康益处相关。为了揭示这种适应性反应的保守蛋白磷酸化事件,我们对两种常用的啮齿动物模型(小鼠的跑步机跑步和大鼠的原位肌肉收缩)的骨骼肌进行了基于质谱的磷酸化蛋白质组学分析。我们将这些磷酸化蛋白质组学特征与人类的周期性运动进行叠加,以识别常见的跨物种磷酸化位点反应,以及独特的特定模型调节。我们鉴定了超过 22000 个磷酸化位点,揭示了运动调节的同源蛋白磷酸化和重叠信号通路。这包括基质相互作用分子 1(STIM1)上的两个保守磷酸化位点,我们验证其为 AMPK 底物。此外,我们证明 AMPK 介导的 STIM1 磷酸化负调节钙库操纵性钙内流,这对果蝇的运动有益。这个整合的人类、小鼠和大鼠骨骼肌运动调节信号的跨物种资源揭示了保守网络,并揭示了 AMPK 和细胞内钙流之间的串扰。

相似文献

1
Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry.
EMBO J. 2019 Dec 16;38(24):e102578. doi: 10.15252/embj.2019102578. Epub 2019 Aug 5.
4
Molecular physiology and pathophysiology of stromal interaction molecules.
Exp Biol Med (Maywood). 2018 Mar;243(5):451-472. doi: 10.1177/1535370218754524. Epub 2018 Jan 24.
6
Differential dependence of store-operated and excitation-coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1.
J Physiol. 2008 Oct 15;586(20):4815-24. doi: 10.1113/jphysiol.2008.160481. Epub 2008 Sep 4.
7
Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates.
Cell Metab. 2015 Nov 3;22(5):922-35. doi: 10.1016/j.cmet.2015.09.001. Epub 2015 Oct 1.
9
What role for store-operated Ca²⁺ entry in muscle?
Microcirculation. 2013 May;20(4):330-6. doi: 10.1111/micc.12042.
10
Cross-talk between N-terminal and C-terminal domains in stromal interaction molecule 2 (STIM2) determines enhanced STIM2 sensitivity.
J Biol Chem. 2019 Apr 19;294(16):6318-6332. doi: 10.1074/jbc.RA118.006801. Epub 2019 Mar 1.

引用本文的文献

1
Skeletal muscle proteomics: considerations and opportunities.
NPJ Metab Health Dis. 2025 Jul 2;3(1):30. doi: 10.1038/s44324-025-00073-2.
3
Filamin C dimerisation is regulated by HSPB7.
Nat Commun. 2025 May 1;16(1):4090. doi: 10.1038/s41467-025-58889-x.
4
AMPK phosphosite profiling by label-free mass spectrometry reveals a multitude of mTORC1-regulated substrates.
NPJ Metab Health Dis. 2025;3(1):8. doi: 10.1038/s44324-025-00052-7. Epub 2025 Mar 4.
5
Pantothenate kinase 4 controls skeletal muscle substrate metabolism.
Nat Commun. 2025 Jan 2;16(1):345. doi: 10.1038/s41467-024-55036-w.
6
Aerobic capacity and muscle proteome: Insights from a mouse model.
Exp Physiol. 2025 Feb;110(2):293-306. doi: 10.1113/EP092308. Epub 2024 Nov 21.
7
Mechanical Loading Modulates AMPK and mTOR Signaling in Muscle Cells.
J Proteome Res. 2024 Oct 4;23(10):4286-4295. doi: 10.1021/acs.jproteome.4c00242. Epub 2024 Aug 30.
8
AMPK as a mediator of tissue preservation: time for a shift in dogma?
Nat Rev Endocrinol. 2024 Sep;20(9):526-540. doi: 10.1038/s41574-024-00992-y. Epub 2024 May 17.
9
Exercise-Regulated Mitochondrial and Nuclear Signalling Networks in Skeletal Muscle.
Sports Med. 2024 May;54(5):1097-1119. doi: 10.1007/s40279-024-02007-2. Epub 2024 Mar 25.
10
Regulation of autophagy by perilysosomal calcium: a new player in β-cell lipotoxicity.
Exp Mol Med. 2024 Feb;56(2):273-288. doi: 10.1038/s12276-024-01161-x. Epub 2024 Feb 1.

本文引用的文献

1
The functional landscape of the human phosphoproteome.
Nat Biotechnol. 2020 Mar;38(3):365-373. doi: 10.1038/s41587-019-0344-3. Epub 2019 Dec 9.
2
Illuminating the dark phosphoproteome.
Sci Signal. 2019 Jan 22;12(565):eaau8645. doi: 10.1126/scisignal.aau8645.
3
SR Ca leak in skeletal muscle fibers acts as an intracellular signal to increase fatigue resistance.
J Gen Physiol. 2019 Apr 1;151(4):567-577. doi: 10.1085/jgp.201812152. Epub 2019 Jan 11.
4
The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle.
JCI Insight. 2018 Nov 15;3(22):121689. doi: 10.1172/jci.insight.121689.
5
Gain-of-function mutations in STIM1 and ORAI1 causing tubular aggregate myopathy and Stormorken syndrome.
Cell Calcium. 2018 Dec;76:1-9. doi: 10.1016/j.ceca.2018.07.008. Epub 2018 Sep 3.
6
Replicability and Prediction: Lessons and Challenges from GWAS.
Trends Genet. 2018 Jul;34(7):504-517. doi: 10.1016/j.tig.2018.03.005. Epub 2018 Apr 30.
8
Extracellular Vesicles Provide a Means for Tissue Crosstalk during Exercise.
Cell Metab. 2018 Jan 9;27(1):237-251.e4. doi: 10.1016/j.cmet.2017.12.001.
9
AMPK in skeletal muscle function and metabolism.
FASEB J. 2018 Apr;32(4):1741-1777. doi: 10.1096/fj.201700442R. Epub 2018 Jan 5.
10
The Reactome Pathway Knowledgebase.
Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655. doi: 10.1093/nar/gkx1132.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验