Department of Computer Science and Engineering, Incheon National University, Incheon, 22012, South Korea.
Department of Computer Sciences, Yonsei University, Seoul, 03722, South Korea.
BMC Bioinformatics. 2019 Aug 6;20(1):415. doi: 10.1186/s12859-019-3013-0.
Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance.
In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research.
We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects.
准确预测药物-药物相互作用(DDI)的效果对于更安全、更有效的联合用药至关重要。已经提出了许多计算方法来预测 DDI 的效果,旨在减少在体内或体外识别这些相互作用的工作量,但在预测性能方面仍有改进的空间。
在这项研究中,我们提出了一种新的深度学习模型,以更准确地预测 DDI 的效果。该模型使用自编码器和深度前馈网络,使用已知药物对的结构相似性谱(SSP)、基因本体论(GO)术语相似性谱(GSP)和靶基因相似性谱(TSP)进行训练,以预测 DDI 的药理作用。结果表明,当单独使用 SSP 时,GSP 和 TSP 提高了预测准确性,并且自编码器比 PCA 更有效地降低每个谱的维度。我们的模型表现优于现有方法,并识别出一些新的 DDI,这些 DDI得到了医学数据库或现有研究的支持。
我们提出了一种新的深度学习模型,用于更准确地预测 DDI 及其效果,这可能有助于未来的研究发现新的 DDI 及其药理作用。