Pan Dawei, Lu Ping, Wu Yunbing, Kang Liping, Huang Fengxin, Lin Kaibiao, Yang Fan
School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China.
School of Economics and Management, Xiamen University of Technology, Xiamen, China.
Front Pharmacol. 2024 Feb 16;15:1354540. doi: 10.3389/fphar.2024.1354540. eCollection 2024.
Potential drug-drug interactions (DDI) can lead to adverse drug reactions (ADR), and DDI prediction can help pharmacy researchers detect harmful DDI early. However, existing DDI prediction methods fall short in fully capturing drug information. They typically employ a single-view input, focusing solely on drug features or drug networks. Moreover, they rely exclusively on the final model layer for predictions, overlooking the nuanced information present across various network layers. To address these limitations, we propose a multi-scale dual-view fusion (MSDF) method for DDI prediction. More specifically, MSDF first constructs two views, topological and feature views of drugs, as model inputs. Then a graph convolutional neural network is used to extract the feature representations from each view. On top of that, a multi-scale fusion module integrates information across different graph convolutional layers to create comprehensive drug embeddings. The embeddings from the two views are summed as the final representation for classification. Experiments on two real-world datasets demonstrate that MSDF achieves higher accuracy than state-of-the-art methods, as the dual-view, multi-scale approach better captures drug characteristics.
潜在的药物相互作用(DDI)可能导致药物不良反应(ADR),而DDI预测有助于药学研究人员早期发现有害的DDI。然而,现有的DDI预测方法在充分捕捉药物信息方面存在不足。它们通常采用单视图输入,仅关注药物特征或药物网络。此外,它们仅依赖最终模型层进行预测,忽略了各网络层中存在的细微信息。为解决这些局限性,我们提出一种用于DDI预测的多尺度双视图融合(MSDF)方法。具体而言,MSDF首先构建药物的两种视图,即拓扑视图和特征视图,作为模型输入。然后使用图卷积神经网络从每个视图中提取特征表示。在此基础上,多尺度融合模块整合不同图卷积层的信息,以创建全面的药物嵌入。来自两种视图的嵌入相加作为分类的最终表示。在两个真实世界数据集上的实验表明,由于双视图、多尺度方法能更好地捕捉药物特征,MSDF比现有方法具有更高的准确率。