文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

医学人工智能的崛起:医生在与智能机器协作时必须了解的数据。

The medical AI insurgency: what physicians must know about data to practice with intelligent machines.

作者信息

Miller D Douglas

机构信息

Medical College of Georgia (GB 3330), Augusta, GA 30912 USA.

出版信息

NPJ Digit Med. 2019 Jun 28;2:62. doi: 10.1038/s41746-019-0138-5. eCollection 2019.


DOI:10.1038/s41746-019-0138-5
PMID:31388566
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6599029/
Abstract

Machine learning (ML) and its parent technology trend, artificial intelligence (AI), are deriving novel insights from ever larger and more complex datasets. Efficient and accurate AI analytics require fastidious data science-the careful curating of knowledge representations in databases, decomposition of data matrices to reduce dimensionality, and preprocessing of datasets to mitigate the confounding effects of messy (i.e., missing, redundant, and outlier) data. Messier, bigger and more dynamic medical datasets create the potential for ML computing systems querying databases to draw erroneous data inferences, portending real-world human health consequences. High-dimensional medical datasets can be static or dynamic. For example, principal component analysis (PCA) used within R computing packages can speed & scale disease association analytics for deriving polygenic risk scores from static gene-expression microarrays. Robust PCA of -dimensional subspace data accelerates image acquisition and reconstruction of dynamic 4-D magnetic resonance imaging studies, enhancing tracking of organ physiology, tissue relaxation parameters, and contrast agent effects. Unlike other data-dense business and scientific sectors, medical AI users must be aware that input data quality limitations can have health implications, potentially reducing analytic model accuracy for predicting clinical disease risks and patient outcomes. As AI technologies find more health applications, physicians should contribute their health domain expertize to rules-/ML-based computer system development, inform input data provenance and recognize the importance of data preprocessing quality assurance interpreting the clinical implications of intelligent machine outputs to patients.

摘要

机器学习(ML)及其母体技术趋势——人工智能(AI),正从越来越大、越来越复杂的数据集中获取新颖的见解。高效且准确的AI分析需要严谨的数据科学——精心整理数据库中的知识表示、分解数据矩阵以降低维度,以及对数据集进行预处理以减轻杂乱(即缺失、冗余和异常值)数据的混杂影响。更杂乱、更大且更具动态性的医学数据集使得ML计算系统查询数据库时有可能得出错误的数据推断,这预示着会对现实世界中的人类健康产生影响。高维医学数据集可以是静态的或动态的。例如,R计算包中使用的主成分分析(PCA)可以加快并扩大疾病关联分析的速度,以便从静态基因表达微阵列中得出多基因风险评分。对高维子空间数据进行稳健的PCA可加速动态四维磁共振成像研究的图像采集和重建,增强对器官生理学、组织弛豫参数和造影剂效果的跟踪。与其他数据密集型商业和科学领域不同,医学AI用户必须意识到输入数据质量的局限性可能会对健康产生影响,这可能会降低预测临床疾病风险和患者预后的分析模型的准确性。随着AI技术在医疗领域有更多应用,医生应将其在健康领域的专业知识贡献于基于规则/ML的计算机系统开发,告知输入数据的来源,并认识到数据预处理质量保证的重要性,向患者解释智能机器输出结果的临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86b9/6599029/d53410783ebb/41746_2019_138_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86b9/6599029/25bc461a86a0/41746_2019_138_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86b9/6599029/d53410783ebb/41746_2019_138_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86b9/6599029/25bc461a86a0/41746_2019_138_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86b9/6599029/d53410783ebb/41746_2019_138_Fig2_HTML.jpg

相似文献

[1]
The medical AI insurgency: what physicians must know about data to practice with intelligent machines.

NPJ Digit Med. 2019-6-28

[2]
Artificial intelligence technologies and compassion in healthcare: A systematic scoping review.

Front Psychol. 2023-1-17

[3]
Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF.

Hum Reprod. 2022-7-30

[4]
AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems.

SN Comput Sci. 2022

[5]
Machine Intelligence in Cardiovascular Medicine.

Cardiol Rev. 2020

[6]
Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF.

Hum Reprod. 2020-4-28

[7]
A primer on applying AI synergistically with domain expertise to oncology.

Biochim Biophys Acta Rev Cancer. 2021-8

[8]
Artificial Intelligence in Medical Practice: The Question to the Answer?

Am J Med. 2017-11-7

[9]
Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification

2015

[10]
Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.

Transfus Apher Sci. 2018-6

引用本文的文献

[1]
MiMICRI: Towards Domain-centered Counterfactual Explanations of Cardiovascular Image Classification Models.

FACCT 24 (2024). 2024-6

[2]
Artificial intelligence research in radiation oncology: a practical guide for the clinician on concepts and methods.

BJR Open. 2024-11-13

[3]
Understanding AI's Role in Endometriosis Patient Education and Evaluating Its Information and Accuracy: Systematic Review.

JMIR AI. 2024-10-30

[4]
Health Care Professionals' Experience of Using AI: Systematic Review With Narrative Synthesis.

J Med Internet Res. 2024-10-30

[5]
Machine learning approaches toward an understanding of acute kidney injury: current trends and future directions.

Korean J Intern Med. 2024-11

[6]
Evaluating and mitigating unfairness in multimodal remote mental health assessments.

PLOS Digit Health. 2024-7-24

[7]
Data Science as a Core Competency in Undergraduate Medical Education in the Age of Artificial Intelligence in Health Care.

JMIR Med Educ. 2023-7-11

[8]
Breaking Bias: The Role of Artificial Intelligence in Improving Clinical Decision-Making.

Cureus. 2023-3-20

[9]
Applications of deep learning to reduce the need for iodinated contrast media for CT imaging: a systematic review.

Int J Comput Assist Radiol Surg. 2023-10

[10]
Exploring the experiences and views of doctors working with Artificial Intelligence in English healthcare; a qualitative study.

PLoS One. 2023

本文引用的文献

[1]
The reproducibility crisis in the age of digital medicine.

NPJ Digit Med. 2019-1-29

[2]
Scalable and accurate deep learning with electronic health records.

NPJ Digit Med. 2018-5-8

[3]
How Cognitive Machines Can Augment Medical Imaging.

AJR Am J Roentgenol. 2018-11-13

[4]
PCA in High Dimensions: An orientation.

Proc IEEE Inst Electr Electron Eng. 2018-8

[5]
The Big Health Data-Intelligent Machine Paradox.

Am J Med. 2018-11

[6]
Reinforced Adversarial Neural Computer for de Novo Molecular Design.

J Chem Inf Model. 2018-6-12

[7]
Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr.

Bioinformatics. 2018-8-15

[8]
Implementing Machine Learning in Health Care - Addressing Ethical Challenges.

N Engl J Med. 2018-3-15

[9]
Artificial Intelligence in Medical Practice: The Question to the Answer?

Am J Med. 2017-11-7

[10]
A hybrid manifold learning algorithm for the diagnosis and prognostication of Alzheimer's disease.

AMIA Annu Symp Proc. 2015-11-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索