Suppr超能文献

前列腺特异性抗原动力学的机制模型研究显示出个性化预测放射治疗效果的潜力。

Mechanistic modelling of prostate-specific antigen dynamics shows potential for personalized prediction of radiation therapy outcome.

机构信息

Dipartimento di Ingegneria Civile e Architettura, Università degli Studi di Pavia, Via Ferrata 3, 27100 Pavia, Italy.

Departamento de Matemáticas, Universidade da Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain.

出版信息

J R Soc Interface. 2019 Aug 30;16(157):20190195. doi: 10.1098/rsif.2019.0195. Epub 2019 Aug 14.

Abstract

External beam radiation therapy is a widespread treatment for prostate cancer. The ensuing patient follow-up is based on the evolution of the prostate-specific antigen (PSA). Serum levels of PSA decay due to the radiation-induced death of tumour cells and cancer recurrence usually manifest as a rising PSA. The current definition of biochemical relapse requires that PSA reaches nadir and starts increasing, which delays the use of further treatments. Also, these methods do not account for the post-radiation tumour dynamics that may contain early information on cancer recurrence. Here, we develop three mechanistic models of post-radiation PSA evolution. Our models render superior fits of PSA data in a patient cohort and provide a biological justification for the most common empirical formulation of PSA dynamics. We also found three model-based prognostic variables: the proliferation rate of the survival fraction, the ratio of radiation-induced cell death rate to the survival proliferation rate, and the time to PSA nadir since treatment termination. We argue that these markers may enable the early identification of biochemical relapse, which would permit physicians to subsequently adapt patient monitoring to optimize the detection and treatment of cancer recurrence.

摘要

外照射放射治疗是前列腺癌的一种广泛应用的治疗方法。随后的患者随访基于前列腺特异性抗原(PSA)的变化。由于肿瘤细胞的辐射诱导死亡和癌症复发,PSA 的血清水平下降,通常表现为 PSA 升高。目前,生化复发的定义要求 PSA 达到最低点并开始增加,这会延迟进一步治疗的使用。此外,这些方法没有考虑到放射后肿瘤动力学,而肿瘤动力学可能包含有关癌症复发的早期信息。在这里,我们开发了三种放射后 PSA 演变的机制模型。我们的模型在患者队列中对 PSA 数据进行了更好的拟合,并为 PSA 动力学的最常见经验公式提供了生物学依据。我们还发现了三个基于模型的预后变量:存活分数的增殖率、辐射诱导的细胞死亡率与存活增殖率的比值以及自治疗结束以来 PSA 最低点的时间。我们认为这些标志物可以实现生化复发的早期识别,从而使医生能够随后调整患者监测,以优化癌症复发的检测和治疗。

相似文献

引用本文的文献

6
Predicting regrowth of low-grade gliomas after radiotherapy.预测放疗后低级别胶质瘤的复发。
PLoS Comput Biol. 2023 Mar 31;19(3):e1011002. doi: 10.1371/journal.pcbi.1011002. eCollection 2023 Mar.

本文引用的文献

1
Emerging biomarkers in the diagnosis of prostate cancer.前列腺癌诊断中的新兴生物标志物。
Pharmgenomics Pers Med. 2018 May 16;11:83-94. doi: 10.2147/PGPM.S136026. eCollection 2018.
9
Tissue-scale, personalized modeling and simulation of prostate cancer growth.前列腺癌生长的组织尺度、个性化建模与模拟
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7663-E7671. doi: 10.1073/pnas.1615791113. Epub 2016 Nov 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验