Dipartimento di Ingegneria Civile e Architettura, Università degli Studi di Pavia, Via Ferrata 3, 27100 Pavia, Italy.
Departamento de Matemáticas, Universidade da Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain.
J R Soc Interface. 2019 Aug 30;16(157):20190195. doi: 10.1098/rsif.2019.0195. Epub 2019 Aug 14.
External beam radiation therapy is a widespread treatment for prostate cancer. The ensuing patient follow-up is based on the evolution of the prostate-specific antigen (PSA). Serum levels of PSA decay due to the radiation-induced death of tumour cells and cancer recurrence usually manifest as a rising PSA. The current definition of biochemical relapse requires that PSA reaches nadir and starts increasing, which delays the use of further treatments. Also, these methods do not account for the post-radiation tumour dynamics that may contain early information on cancer recurrence. Here, we develop three mechanistic models of post-radiation PSA evolution. Our models render superior fits of PSA data in a patient cohort and provide a biological justification for the most common empirical formulation of PSA dynamics. We also found three model-based prognostic variables: the proliferation rate of the survival fraction, the ratio of radiation-induced cell death rate to the survival proliferation rate, and the time to PSA nadir since treatment termination. We argue that these markers may enable the early identification of biochemical relapse, which would permit physicians to subsequently adapt patient monitoring to optimize the detection and treatment of cancer recurrence.
外照射放射治疗是前列腺癌的一种广泛应用的治疗方法。随后的患者随访基于前列腺特异性抗原(PSA)的变化。由于肿瘤细胞的辐射诱导死亡和癌症复发,PSA 的血清水平下降,通常表现为 PSA 升高。目前,生化复发的定义要求 PSA 达到最低点并开始增加,这会延迟进一步治疗的使用。此外,这些方法没有考虑到放射后肿瘤动力学,而肿瘤动力学可能包含有关癌症复发的早期信息。在这里,我们开发了三种放射后 PSA 演变的机制模型。我们的模型在患者队列中对 PSA 数据进行了更好的拟合,并为 PSA 动力学的最常见经验公式提供了生物学依据。我们还发现了三个基于模型的预后变量:存活分数的增殖率、辐射诱导的细胞死亡率与存活增殖率的比值以及自治疗结束以来 PSA 最低点的时间。我们认为这些标志物可以实现生化复发的早期识别,从而使医生能够随后调整患者监测,以优化癌症复发的检测和治疗。