Suppr超能文献

放疗后前列腺特异性抗原动力学的个体化预测能够实现生化复发的早期预测。

Patient-specific forecasting of postradiotherapy prostate-specific antigen kinetics enables early prediction of biochemical relapse.

作者信息

Lorenzo Guillermo, di Muzio Nadia, Deantoni Chiara Lucrezia, Cozzarini Cesare, Fodor Andrei, Briganti Alberto, Montorsi Francesco, Pérez-García Víctor M, Gomez Hector, Reali Alessandro

机构信息

Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, 27100 Pavia, Italy.

Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX 78712-1229, USA.

出版信息

iScience. 2022 Oct 25;25(11):105430. doi: 10.1016/j.isci.2022.105430. eCollection 2022 Nov 18.

Abstract

The detection of prostate cancer recurrence after external beam radiotherapy relies on the measurement of a sustained rise of serum prostate-specific antigen (PSA). However, this biochemical relapse may take years to occur, thereby delaying the delivery of a secondary treatment to patients with recurring tumors. To address this issue, we propose to use patient-specific forecasts of PSA dynamics to predict biochemical relapse earlier. Our forecasts are based on a mechanistic model of prostate cancer response to external beam radiotherapy, which is fit to patient-specific PSA data collected during standard posttreatment monitoring. Our results show a remarkable performance of our model in recapitulating the observed changes in PSA and yielding short-term predictions over approximately 1 year (cohort median root mean squared error of 0.10-0.47 ng/mL and 0.13 to 1.39 ng/mL, respectively). Additionally, we identify 3 model-based biomarkers that enable accurate identification of biochemical relapse (area under the receiver operating characteristic curve > 0.80) significantly earlier than standard practice (p < 0.01).

摘要

体外放疗后前列腺癌复发的检测依赖于血清前列腺特异性抗原(PSA)持续升高的测量。然而,这种生化复发可能需要数年时间才会出现,从而延迟了对复发肿瘤患者进行二次治疗。为了解决这个问题,我们建议使用患者特异性的PSA动态预测来更早地预测生化复发。我们的预测基于前列腺癌对外照射放疗反应的机制模型,该模型与标准治疗后监测期间收集的患者特异性PSA数据相拟合。我们的结果表明,我们的模型在重现观察到的PSA变化以及进行约1年的短期预测方面表现出色(队列中位数均方根误差分别为0.10 - 0.47 ng/mL和0.13至1.39 ng/mL)。此外,我们确定了3种基于模型的生物标志物,它们能够比标准做法显著更早地准确识别生化复发(受试者工作特征曲线下面积> 0.80)(p < 0.01)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3fd/9641236/722b52774301/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验