Suppr超能文献

全印刷导电聚合物墨水 μ 型针状电极阵列用于生物电子应用。

Fully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications.

机构信息

Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany.

Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52425 Jülich , Germany.

出版信息

ACS Appl Mater Interfaces. 2019 Sep 11;11(36):32778-32786. doi: 10.1021/acsami.9b11774. Epub 2019 Aug 29.

Abstract

Microelectrode arrays (MEAs) are widely used platforms in bioelectronics to study electrogenic cells. In recent years, the processing of conductive polymers for the fabrication of three-dimensional electrode arrays has gained increasing interest for the development of novel sensor designs. Here, additive manufacturing techniques are promising tools for the production of MEAs with three-dimensional electrodes. In this work, a facile additive manufacturing process for the fabrication of MEAs that feature needle-like electrode tips, so-called μ-needles, is presented. To this end, an aerosol-jet compatible PEDOT:PSS and multiwalled carbon nanotube composite ink with a conductivity of 323 ± 75 S m is developed and used in a combined inkjet and aerosol-jet printing process to produce the μ-needle electrode features. The μ-needles are fabricated with a diameter of 10 ± 2 μm and a height of 33 ± 4 μm. They penetrate an inkjet-printed dielectric layer to a height of 12 ± 3 μm. After successful printing, the electrochemical properties of the devices are assessed via cyclic voltammetry and impedance spectroscopy. The μ-needles show a capacitance of 242 ± 70 nF at a scan rate of 5 mV s and an impedance of 128 ± 22 kΩ at 1 kHz frequency. The stability of the μ-needle MEAs in aqueous electrolyte is demonstrated and the devices are used to record extracellular signals from cardiomyocyte-like HL-1 cells. This proof-of-principle experiment shows the μ-needle MEAs' cell-culture compatibility and functional integrity to investigate electrophysiological signals from living cells.

摘要

微电极阵列 (MEA) 是生物电子学中广泛使用的平台,用于研究发电细胞。近年来,为了开发新型传感器设计,用于制造三维电极阵列的导电聚合物的处理得到了越来越多的关注。在这里,增材制造技术是生产具有三维电极的 MEA 的有前途的工具。在这项工作中,提出了一种用于制造具有所谓 μ-针电极尖端的 MEA 的简便增材制造工艺。为此,开发了一种与气溶胶喷射兼容的 PEDOT:PSS 和多壁碳纳米管复合油墨,其电导率为 323 ± 75 S m,并在喷墨和气溶胶喷射印刷工艺中使用该油墨来生产 μ-针电极特征。μ-针的直径为 10 ± 2 μm,高度为 33 ± 4 μm。它们穿透喷墨印刷的介电层的高度为 12 ± 3 μm。成功打印后,通过循环伏安法和阻抗谱评估器件的电化学性能。μ-针在扫描速率为 5 mV s 时表现出 242 ± 70 nF 的电容,在 1 kHz 频率时表现出 128 ± 22 kΩ 的阻抗。证明了 μ-针 MEA 在水基电解质中的稳定性,并使用该器件记录心肌细胞样 HL-1 细胞的细胞外信号。该原理验证实验表明 μ-针 MEA 具有细胞培养相容性和功能完整性,可用于研究活细胞的电生理信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验