Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Biomaterials Lab, Material Research Center, Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Republic of Korea.
Biotechnol Bioeng. 2019 Dec;116(12):3372-3381. doi: 10.1002/bit.27150. Epub 2019 Sep 3.
Bacterial cellulose nanofiber (CNF) is a polymer with a wide range of potential industrial applications. Several Komagataeibacter species, including Komagataeibacter xylinus as a model organism, produce CNF. However, the industrial application of CNF has been hampered by inefficient CNF production, necessitating metabolic engineering for the enhanced CNF production. Here, we present complete genome sequence and a genome-scale metabolic model KxyMBEL1810 of K. xylinus DSM 2325 for metabolic engineering applications. Genome analysis of this bacterium revealed that a set of genes associated with CNF biosynthesis and regulation were present in this bacterium, which were also conserved in another six representative Komagataeibacter species having complete genome information. To better understand the metabolic characteristics of K. xylinus DSM 2325, KxyMBEL1810 was reconstructed using genome annotation data, relevant computational resources and experimental growth data generated in this study. Random sampling and correlation analysis of the KxyMBEL1810 predicted pgi and gnd genes as novel overexpression targets for the enhanced CNF production. Among engineered K. xylinus strains individually overexpressing heterologous pgi and gnd genes, either from Escherichia coli or Corynebacterium glutamicum, batch fermentation of a strain overexpressing the E. coli pgi gene produced 3.15 g/L of CNF in a complex medium containing glucose, which was the best CNF concentration achieved in this study, and 115.8% higher than that (1.46 g/L) obtained from the control strain. Genome sequence data and KxyMBEL1810 generated in this study should be useful resources for metabolic engineering of K. xylinus for the enhanced CNF production.
细菌纤维素纳米纤维(CNF)是一种具有广泛潜在工业应用的聚合物。包括木醋杆菌(Komagataeibacter xylinus)在内的几种 Komagataeibacter 物种都能产生 CNF。然而,由于 CNF 的生产效率低下,其工业应用受到了阻碍,因此需要进行代谢工程以提高 CNF 的产量。在这里,我们介绍了木醋杆菌 DSM 2325 的全基因组序列和基因组尺度代谢模型 KxyMBEL1810,可用于代谢工程应用。对该细菌的基因组分析表明,该细菌中存在一套与 CNF 生物合成和调控相关的基因,这些基因在另外六个具有完整基因组信息的代表性 Komagataeibacter 物种中也保守存在。为了更好地了解木醋杆菌 DSM 2325 的代谢特性,我们使用基因组注释数据、相关计算资源和本研究中生成的实验生长数据来重建 KxyMBEL1810。随机采样和相关性分析表明,KxyMBEL1810 预测的 pgi 和 gnd 基因是增强 CNF 生产的新的过表达靶标。在分别过表达来自大肠杆菌或谷氨酸棒状杆菌的异源 pgi 和 gnd 基因的工程化木醋杆菌菌株中,在含有葡萄糖的复杂培养基中,过表达大肠杆菌 pgi 基因的菌株进行批式发酵可产生 3.15 g/L 的 CNF,这是本研究中达到的最佳 CNF 浓度,比对照菌株(1.46 g/L)提高了 115.8%。本研究中生成的基因组序列数据和 KxyMBEL1810 应该是木醋杆菌代谢工程用于增强 CNF 生产的有用资源。