Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
Silk lab, Tufts University, Medford, MA, 02155, USA.
Macromol Biosci. 2020 Jan;20(1):e1900191. doi: 10.1002/mabi.201900191. Epub 2019 Aug 21.
Hierarchical molecular assembly is a fundamental strategy for manufacturing protein structures in nature. However, to translate this natural strategy into advanced digital manufacturing like three-dimensional (3D) printing remains a technical challenge. This work presents a 3D printing technique with silk fibroin to address this challenge, by rationally designing an aqueous salt bath capable of directing the hierarchical assembly of the protein molecules. This technique, conducted under aqueous and ambient conditions, results in 3D proteinaceous architectures characterized by intrinsic biocompatibility/biodegradability and robust mechanical features. The versatility of this method is shown in a diversity of 3D shapes and a range of functional components integrated into the 3D prints. The manufacturing capability is exemplified by the single-step construction of perfusable microfluidic chips which eliminates the use of supporting or sacrificial materials. The 3D shaping capability of the protein material can benefit a multitude of biomedical devices, from drug delivery to surgical implants to tissue scaffolds. This work also provides insights into the recapitulation of solvent-directed hierarchical molecular assembly for artificial manufacturing.
层次分子组装是自然界中制造蛋白质结构的一种基本策略。然而,将这种自然策略转化为先进的数字制造(如 3D 打印)仍然是一个技术挑战。本工作提出了一种使用丝素蛋白的 3D 打印技术来应对这一挑战,通过合理设计一种能够指导蛋白质分子层次组装的水相盐浴。该技术在水相和环境条件下进行,得到的具有内在生物相容性/可降解性和强大机械性能的 3D 蛋白质结构。该方法的多功能性体现在多种 3D 形状和一系列功能组件集成到 3D 打印中。通过一步法构建可灌注的微流控芯片来展示制造能力,从而消除了对支撑或牺牲材料的使用。蛋白质材料的 3D 成型能力可以使多种生物医学设备受益,从药物输送到手术植入物到组织支架。这项工作还为人工制造中溶剂导向的层次分子组装的再现提供了思路。