Suppr超能文献

基于波兰戈尔采国家公园高分辨率数字高程模型统计分析的滑坡类型推断

Landslide type inference based on statistical analysis of a high-resolution digital elevation model in Gorce National Park, Poland.

作者信息

Szczepanek Robert, Szczęch Mateusz, Kania Maciej

机构信息

Institute of Geological Sciences, Faculty of Geography and Geology, Jagiellonian University, 30-387, Krakow, Poland.

出版信息

Sci Rep. 2024 Jun 19;14(1):14130. doi: 10.1038/s41598-024-65026-z.

Abstract

High-resolution digital elevation models are commonly utilized for detecting and classifying landslides. In this study, we aim to refine landslide detection and classification by analyzing the geometry of landslides using slope and aspect, coupled with descriptive statistics up to the fourth central moment (kurtosis). Employing the Monte Carlo method for creating terrain topography probability distributions and ANOVA tests for statistical validation, we analyzed 364 landslides in Gorce National Park, Poland, revealing significant kurtosis differences across landslide types and lithologies. This methodology offers a novel approach to landslide classification based on surface geometry, with implications for enhancing scientific research and improving landslide risk management strategies.

摘要

高分辨率数字高程模型通常用于检测和分类滑坡。在本研究中,我们旨在通过使用坡度和坡向分析滑坡的几何形状,并结合直至四阶中心矩(峰度)的描述性统计数据,来优化滑坡检测和分类。我们采用蒙特卡罗方法创建地形概率分布,并使用方差分析测试进行统计验证,对波兰戈尔采国家公园的364处滑坡进行了分析,结果表明不同滑坡类型和岩性的峰度存在显著差异。这种方法为基于地表几何形状的滑坡分类提供了一种新途径,对加强科学研究和改进滑坡风险管理策略具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13d2/11186822/7a9b290abd1a/41598_2024_65026_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验