Suppr超能文献

基于 MRI 的增强血管周围间隙可视性和量化的图像处理方法。

Image processing approaches to enhance perivascular space visibility and quantification using MRI.

机构信息

Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Neuroscience graduate program, University of Southern California, Los Angeles, CA, USA.

出版信息

Sci Rep. 2019 Aug 26;9(1):12351. doi: 10.1038/s41598-019-48910-x.

Abstract

Imaging the perivascular spaces (PVS), also known as Virchow-Robin space, has significant clinical value, but there remains a need for neuroimaging techniques to improve mapping and quantification of the PVS. Current technique for PVS evaluation is a scoring system based on visual reading of visible PVS in regions of interest, and often limited to large caliber PVS. Enhancing the visibility of the PVS could support medical diagnosis and enable novel neuroscientific investigations. Increasing the MRI resolution is one approach to enhance the visibility of PVS but is limited by acquisition time and physical constraints. Alternatively, image processing approaches can be utilized to improve the contrast ratio between PVS and surrounding tissue. Here we combine T1- and T2-weighted images to enhance PVS contrast, intensifying the visibility of PVS. The Enhanced PVS Contrast (EPC) was achieved by combining T1- and T2-weighted images that were adaptively filtered to remove non-structured high-frequency spatial noise. EPC was evaluated on healthy young adults by presenting them to two expert readers and also through automated quantification. We found that EPC improves the conspicuity of the PVS and aid resolving a larger number of PVS. We also present a highly reliable automated PVS quantification approach, which was optimized using expert readings.

摘要

血管周围间隙(PVS)成像,也称为 Virchow-Robin 空间,具有重要的临床价值,但仍需要神经影像学技术来改善 PVS 的定位和定量。目前的 PVS 评估技术是一种基于对感兴趣区域中可见 PVS 的视觉阅读的评分系统,并且通常仅限于大口径 PVS。增强 PVS 的可见性可以支持医学诊断并能够进行新的神经科学研究。提高 MRI 分辨率是增强 PVS 可见性的一种方法,但受到采集时间和物理限制的限制。或者,可以使用图像处理方法来提高 PVS 与周围组织之间的对比度。在这里,我们结合 T1 和 T2 加权图像来增强 PVS 对比度,从而增强 PVS 的可见性。通过自适应滤波来去除非结构化的高频空间噪声,对 T1 和 T2 加权图像进行组合来实现增强 PVS 对比度(EPC)。通过向两位专家读者展示 EPC,并通过自动定量评估,对健康的年轻成年人进行了评估。我们发现 EPC 提高了 PVS 的显著性,并有助于解决更多的 PVS。我们还提出了一种高度可靠的自动 PVS 定量方法,该方法使用专家读数进行了优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d278/6710285/ebadbf70f36a/41598_2019_48910_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验