Suppr超能文献

神经元竞争的多尺度变异性的动力学建模。

Dynamical modeling of multi-scale variability in neuronal competition.

机构信息

Mathematical Biology Section, Laboratory of Biological Modeling, National Institutes of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD USA.

出版信息

Commun Biol. 2019 Aug 23;2:319. doi: 10.1038/s42003-019-0555-7. eCollection 2019.

Abstract

Variability is observed at multiple-scales in the brain and ubiquitous in perception. However, the nature of perceptual variability is an open question. We focus on variability during perceptual rivalry, a form of neuronal competition. Rivalry provides a window into neural processing since activity in many brain areas is correlated to the alternating perception rather than a constant ambiguous stimulus. It exhibits robust properties at multiple scales including conscious awareness and neuron dynamics. The prevalent theory for spiking variability is called the balanced state; whereas, the source of perceptual variability is unknown. Here we show that a single biophysical circuit model, satisfying certain mutual inhibition architectures, can explain spiking and perceptual variability during rivalry. These models adhere to a broad set of strict experimental constraints at multiple scales. As we show, the models predict how spiking and perceptual variability changes with stimulus conditions.

摘要

大脑中的变异性在多个尺度上都存在,并且在感知中无处不在。然而,感知变异性的本质是一个悬而未决的问题。我们专注于感知竞争期间的变异性,这是一种神经元竞争的形式。竞争提供了一个观察神经处理的窗口,因为许多大脑区域的活动与交替的感知相关,而不是与恒定的模糊刺激相关。它在多个尺度上表现出稳健的特性,包括意识意识和神经元动力学。尖峰变异性的流行理论称为平衡状态;然而,感知变异性的来源是未知的。在这里,我们展示了一个单一的生物物理电路模型,满足某些相互抑制结构,可以解释竞争期间的尖峰和感知变异性。这些模型符合多个尺度上的一组广泛的严格实验约束。正如我们所展示的,这些模型预测了尖峰和感知变异性如何随刺激条件而变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验