Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.
Nanoscale. 2019 Nov 7;11(41):18946-18967. doi: 10.1039/c9nr06080d. Epub 2019 Aug 27.
The growth and breadth of nanoparticle (NP) research now encompasses many scientific and technologic fields, which has driven the want to control NP dimensions, structures and properties. Recent advances in NP synthesis, especially in solution phase synthesis, and characterization have made it possible to tune NP sizes and shapes to optimize NP properties for various applications. In this review, we summarize the general concepts of using solution phase chemistry to control NP nucleation and growth for the formation of monodisperse NPs with polyhedral, cubic, octahedral, rod, or wire shapes and complex multicomponent heterostructures. Using some representative examples, we demonstrate how to use these monodisperse NPs to tune and optimize NP catalysis of some important energy conversion reactions, such as the oxygen reduction reaction, electrochemical carbon dioxide reduction, and cascade dehydrogenation/hydrogenation for the formation of functional organic compounds under greener chemical reaction conditions. Monodisperse NPs with controlled surface chemistry, morphologies and magnetic properties also show great potential for use in biomedicine. We highlight how monodisperse iron oxide NPs are made biocompatible and target-specific for biomedical imaging, sensing and therapeutic applications. We intend to provide readers some concrete evidence that monodisperse NPs have been established to serve as successful model systems for understanding structure-property relationships at the nanoscale and further to show great potential for advanced nanotechnological applications.
纳米粒子(NP)研究的发展和广度现在涵盖了许多科学和技术领域,这促使人们希望控制 NP 的尺寸、结构和性质。NP 合成的最新进展,特别是在溶液相合成和表征方面,使得可以调整 NP 的尺寸和形状,以优化各种应用的 NP 性能。在这篇综述中,我们总结了使用溶液相化学控制 NP 成核和生长的一般概念,以形成具有多面体、立方、八面体、棒状或线状形状和复杂多组分异质结构的单分散 NP。通过一些代表性的例子,我们展示了如何使用这些单分散 NP 来调整和优化 NP 催化一些重要的能量转换反应,如氧还原反应、电化学二氧化碳还原和级联脱氢/加氢反应,以在更绿色的化学反应条件下形成功能性有机化合物。具有受控表面化学、形态和磁性能的单分散 NP 在生物医学中也显示出巨大的应用潜力。我们强调了如何使单分散氧化铁 NP 具有生物相容性和靶向特异性,用于生物医学成像、传感和治疗应用。我们旨在为读者提供一些具体的证据,证明单分散 NP 已被确立为成功的模型系统,用于理解纳米尺度的结构-性能关系,并进一步展示在先进纳米技术应用中的巨大潜力。