Suppr超能文献

采用单颗粒 ICP-MS 定量分析单分散性和生物相容性的金纳米粒子。

Quantification of monodisperse and biocompatible gold nanoparticles by single-particle ICP-MS.

机构信息

Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA.

Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.

出版信息

Anal Bioanal Chem. 2023 Jul;415(18):4353-4366. doi: 10.1007/s00216-023-04540-x. Epub 2023 Jan 20.

Abstract

Bioanalytical and biomedical applications often require nanoparticles that exhibit narrow size distributions and biocompatibility. Here, we demonstrate how different synthesis methods affect gold nanoparticle (AuNPs) monodispersity and cytotoxicity. Using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS), we found that the size distribution of AuNPs synthesized with a cetyltrimethylammonium chloride (CTAC) cap was significantly improved compared to AuNPs synthesized with citrate capping agents. We determined an up to 4× decrease in the full width at half maximum (FWHM) value of the normal distributions of AuNP diameter and up to a 12% decrease in relative standard deviation (RSD). While the CTAC-capped AuNPs exhibit narrow nanoparticle size distributions, they are cytotoxic, which limits safe and effective bioanalytical and biomedical applications. We sought to impart biocompatibility to CTAC-capped AuNPs through a PEGylation-based surface ligand exchange. We developed a unique ligand exchange method driven by physical force. We demonstrated the successful PEGylation using various PEG derivatives and used these PEGylated nanoparticles to further bioconjugate nucleic acids and peptides. Using cell viability quantification, we confirmed that the monodisperse PEGylated AuNPs were biocompatible. Our monodisperse and biocompatible nanoparticles may advance safe and effective bioanalytical and biomedical applications of nanomaterials.

摘要

生物分析和生物医学应用通常需要具有窄粒径分布和生物相容性的纳米粒子。在这里,我们展示了不同的合成方法如何影响金纳米粒子(AuNPs)的单分散性和细胞毒性。使用单颗粒电感耦合等离子体质谱(SP-ICP-MS),我们发现,与使用柠檬酸作为封端剂合成的 AuNPs 相比,用十六烷基三甲基氯化铵(CTAC)封端合成的 AuNPs 的粒径分布明显改善。我们确定 AuNP 直径正态分布的半峰全宽(FWHM)值最多降低了 4 倍,相对标准偏差(RSD)最多降低了 12%。虽然 CTAC 封端的 AuNPs 具有较窄的纳米粒径分布,但它们具有细胞毒性,这限制了安全有效的生物分析和生物医学应用。我们试图通过基于聚乙二醇(PEG)的表面配体交换赋予 CTAC 封端的 AuNPs 生物相容性。我们开发了一种独特的由物理力驱动的配体交换方法。我们使用各种 PEG 衍生物证明了成功的 PEG 化,并使用这些 PEG 化的纳米粒子进一步生物偶联核酸和肽。通过细胞活力定量,我们证实了单分散的 PEG 化 AuNPs 具有生物相容性。我们的单分散和生物相容的纳米粒子可能会推进安全有效的生物分析和生物医学应用的纳米材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4daf/10645370/d68541afe82a/nihms-1940805-f0002.jpg

相似文献

4
Complement Activation by PEGylated Gold Nanoparticles.聚乙二醇化金纳米粒子的补体激活作用。
Bioconjug Chem. 2018 Apr 18;29(4):976-981. doi: 10.1021/acs.bioconjchem.7b00793. Epub 2018 Feb 16.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验