Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA.
Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
Anal Bioanal Chem. 2023 Jul;415(18):4353-4366. doi: 10.1007/s00216-023-04540-x. Epub 2023 Jan 20.
Bioanalytical and biomedical applications often require nanoparticles that exhibit narrow size distributions and biocompatibility. Here, we demonstrate how different synthesis methods affect gold nanoparticle (AuNPs) monodispersity and cytotoxicity. Using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS), we found that the size distribution of AuNPs synthesized with a cetyltrimethylammonium chloride (CTAC) cap was significantly improved compared to AuNPs synthesized with citrate capping agents. We determined an up to 4× decrease in the full width at half maximum (FWHM) value of the normal distributions of AuNP diameter and up to a 12% decrease in relative standard deviation (RSD). While the CTAC-capped AuNPs exhibit narrow nanoparticle size distributions, they are cytotoxic, which limits safe and effective bioanalytical and biomedical applications. We sought to impart biocompatibility to CTAC-capped AuNPs through a PEGylation-based surface ligand exchange. We developed a unique ligand exchange method driven by physical force. We demonstrated the successful PEGylation using various PEG derivatives and used these PEGylated nanoparticles to further bioconjugate nucleic acids and peptides. Using cell viability quantification, we confirmed that the monodisperse PEGylated AuNPs were biocompatible. Our monodisperse and biocompatible nanoparticles may advance safe and effective bioanalytical and biomedical applications of nanomaterials.
生物分析和生物医学应用通常需要具有窄粒径分布和生物相容性的纳米粒子。在这里,我们展示了不同的合成方法如何影响金纳米粒子(AuNPs)的单分散性和细胞毒性。使用单颗粒电感耦合等离子体质谱(SP-ICP-MS),我们发现,与使用柠檬酸作为封端剂合成的 AuNPs 相比,用十六烷基三甲基氯化铵(CTAC)封端合成的 AuNPs 的粒径分布明显改善。我们确定 AuNP 直径正态分布的半峰全宽(FWHM)值最多降低了 4 倍,相对标准偏差(RSD)最多降低了 12%。虽然 CTAC 封端的 AuNPs 具有较窄的纳米粒径分布,但它们具有细胞毒性,这限制了安全有效的生物分析和生物医学应用。我们试图通过基于聚乙二醇(PEG)的表面配体交换赋予 CTAC 封端的 AuNPs 生物相容性。我们开发了一种独特的由物理力驱动的配体交换方法。我们使用各种 PEG 衍生物证明了成功的 PEG 化,并使用这些 PEG 化的纳米粒子进一步生物偶联核酸和肽。通过细胞活力定量,我们证实了单分散的 PEG 化 AuNPs 具有生物相容性。我们的单分散和生物相容的纳米粒子可能会推进安全有效的生物分析和生物医学应用的纳米材料。