Suppr超能文献

有机晶体从无定形固相的多步成核和生长机制。

Multistep nucleation and growth mechanisms of organic crystals from amorphous solid states.

机构信息

Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.

ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

出版信息

Nat Commun. 2019 Aug 27;10(1):3872. doi: 10.1038/s41467-019-11887-2.

Abstract

Molecular self-assembly into crystallised films or wires on surfaces produces a big family of motifs exhibiting unique optoelectronic properties. However, little attention has been paid to the fundamental mechanism of molecular crystallisation. Here we report a biomimetic design of phosphonate engineered, amphiphilic organic semiconductors capable of self-assembly, which enables us to use real-time in-situ scanning probe microscopy to monitor the growth trajectories of such organic semiconducting films as they nucleate and crystallise from amorphous solid states. The single-crystal film grows through an evolutionary selection approach in a two-dimensional geometry, with five distinct steps: droplet flattening, film coalescence, spinodal decomposition, Ostwald ripening, and self-reorganised layer growth. These sophisticated processes afford ultralong high-density microwire arrays with high mobilities, thus promoting deep understanding of the mechanism as well as offering important insights into the design and development of functional high-performance organic optoelectronic materials and devices through molecular and crystal engineering.

摘要

分子在表面上自组装成结晶薄膜或线材,产生了一大类具有独特光电性能的基元。然而,人们对分子结晶的基本机制关注甚少。在这里,我们报告了一种基于膦酸酯工程的仿生设计,设计出具有自组装能力的两亲性有机半导体,使我们能够使用实时原位扫描探针显微镜来监测这些有机半导体薄膜从非晶固态成核和结晶的生长轨迹。单晶薄膜通过二维几何中的进化选择方法生长,经历五个不同的步骤:液滴变平、薄膜聚结、旋节分解、奥斯特瓦尔德熟化和自组织层生长。这些复杂的过程提供了具有超高密度、长而密的微丝阵列,具有高迁移率,从而促进了对该机制的深入理解,并通过分子和晶体工程为功能型高性能有机光电材料和器件的设计和开发提供了重要的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/860e/6711996/0476b10b32c4/41467_2019_11887_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验