Suppr超能文献

从唾液乳杆菌中分离得到的胆盐水解酶的复杂结构揭示了其底物特异性的结构基础。

The complex structure of bile salt hydrolase from Lactobacillus salivarius reveals the structural basis of substrate specificity.

机构信息

Department of Animal Science, The University of Tennessee, Knoxville, TN, 37996, USA.

Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.

出版信息

Sci Rep. 2019 Aug 27;9(1):12438. doi: 10.1038/s41598-019-48850-6.

Abstract

The gut bacterial bile salt hydrolase (BSH) plays a critical role in host lipid metabolism and energy harvest. Therefore, BSH is a promising microbiome target to develop new therapies to regulate obesity in humans and novel non-antibiotic growth promoters for food animals. We previously reported the 1.90 Å apo crystal structure of BSH from Lactobacillus salivarius (lsBSH). In this study, we soaked the lsBSH crystal with glycocholic acid (GCA), a substrate, and obtained a 2.10 Å structure containing complex of lsBSH bound to GCA and cholic acid (CA), a product. The substrate/product sits in the water-exposed cavity molded by Loops 2 and 3. While the glycine moiety of GCA is exposed into a highly polar pocket, the sterane core of GCA is stabilized by aromatic and hydrophobic interactions. Comparison of product binding with BSH from Clostridium perfringenes reveals a distinct orientation of the sterane core in the binding site. The stability of the substrate-lsBSH complex and the putative catalytic mechanism were explored with molecular dynamics simulations. Site-directed mutagenesis of lsBSH demonstrated that Cys2 and Asn171 are critical for enzymatic activity, while Tyr24, Phe65 and Gln257 contribute to the substrate specificity. Together, this study provides structural insights into BSH-substrate interaction, the mechanism of catalysis and substrate specificity, which facilitate rational design of BSH inhibitors.

摘要

肠道细菌胆汁盐水解酶(BSH)在宿主脂质代谢和能量获取中发挥着关键作用。因此,BSH 是一个很有前途的微生物组靶点,可以开发新的疗法来调节人类肥胖,并为食用动物开发新型非抗生素生长促进剂。我们之前报道了来自唾液乳杆菌(lsBSH)的 BSH 的 1.90Å 无蛋白晶体结构。在这项研究中,我们将 lsBSH 晶体浸泡在甘氨胆酸(GCA)中,一种底物,得到了一个包含 lsBSH 与 GCA 和胆酸(CA)结合产物的 2.10Å 结构。底物/产物位于由环 2 和 3 形成的暴露于水中的腔中。虽然 GCA 的甘氨酸部分暴露在一个高度极性的口袋中,但 GCA 的甾体核心通过芳香族和疏水性相互作用得到稳定。与来自产气荚膜梭菌的 BSH 的产物结合比较揭示了结合位点中甾体核心的明显取向。通过分子动力学模拟研究了底物-lsBSH 复合物的稳定性和潜在的催化机制。lsBSH 的定点突变表明 Cys2 和 Asn171 对于酶活性至关重要,而 Tyr24、Phe65 和 Gln257 有助于底物特异性。总的来说,这项研究提供了 BSH-底物相互作用、催化机制和底物特异性的结构见解,为 BSH 抑制剂的合理设计提供了帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc3a/6711994/1cc3fdb5174b/41598_2019_48850_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验