Suppr超能文献

III 型干扰素(IFN)基因的破坏及其在黏膜抗病毒反应中对 III 型 IFN 受体的丧失的重现。

Disruption of Type III Interferon (IFN) Genes and Recapitulates Loss of the Type III IFN Receptor in the Mucosal Antiviral Response.

机构信息

Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.

Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA.

出版信息

J Virol. 2019 Oct 29;93(22). doi: 10.1128/JVI.01073-19. Print 2019 Nov 15.

Abstract

Type III interferon (IFN), or IFN lambda (IFN-λ), is an essential component of the innate immune response to mucosal viral infections. In both the intestine and the lung, signaling via the IFN-λ receptor (IFNLR) controls clinically important viral pathogens, including influenza virus, norovirus, and rotavirus. While it is thought that IFN-λ cytokines are the exclusive ligands for signaling through IFNLR, it is not known whether genetic ablation of these cytokines phenotypically recapitulates disruption of the receptor. Here, we report the serendipitous establishment of mice, which lack all known functional murine IFN-λ cytokines. We demonstrate that, like mice lacking IFNLR signaling, these mice display defective control of murine norovirus, reovirus, and influenza virus and therefore genocopy mice. Thus, for regulation of viral infections at mucosal sites of both the intestine and lung, signaling via IFNLR can be fully explained by the activity of known cytokines IFN-λ2 and IFN-λ3. Our results confirm the current understanding of ligand-receptor interactions for type III IFN signaling and highlight the importance of this pathway in regulation of mucosal viral pathogens. Type III interferons are potent antiviral cytokines important for regulation of viruses that infect at mucosal surfaces. Studies using mice lacking the gene encoding the type III interferon receptor have demonstrated that signaling through this receptor is critical for protection against influenza virus, norovirus, and reovirus. Using a genetic approach to disrupt murine type III interferon cytokine genes and , we found that mice lacking these cytokines fully recapitulate the impaired control of viruses observed in mice lacking Our results support the idea of an exclusive role for known type III interferon cytokines in signaling via IFNLR to mediate antiviral effects at mucosal surfaces. These findings emphasize the importance of type III interferons in regulation of a variety of viral pathogens and provide important genetic evidence to support our understanding of the ligand-receptor interactions in this pathway.

摘要

III 型干扰素(IFN)或 IFN 型干扰素(IFN-λ)是黏膜病毒感染固有免疫反应的重要组成部分。在肠道和肺部,IFN-λ 受体(IFNLR)的信号传导控制着包括流感病毒、诺如病毒和轮状病毒在内的具有临床重要意义的病毒病原体。虽然认为 IFN-λ 细胞因子是通过 IFNLR 信号传导的唯一配体,但尚不清楚这些细胞因子的遗传缺失是否表型上再现了受体的破坏。在这里,我们报告了意外建立的 IFN-λ 细胞因子缺失的小鼠,这些小鼠缺乏所有已知的功能性鼠 IFN-λ 细胞因子。我们证明,与缺乏 IFNLR 信号传导的 IFN-λ 细胞因子缺失的小鼠一样,这些小鼠对鼠诺如病毒、呼肠孤病毒和流感病毒的控制存在缺陷,因此在基因型上复制了 IFNLR 缺失的小鼠。因此,对于肠道和肺部黏膜部位病毒感染的调节,IFNLR 的信号传导可以完全由已知细胞因子 IFN-λ2 和 IFN-λ3 的活性来解释。我们的结果证实了目前对 III 型干扰素信号传导配体-受体相互作用的理解,并强调了该途径在调节黏膜病毒病原体方面的重要性。III 型干扰素是调节感染黏膜表面的病毒的有效抗病毒细胞因子。使用缺乏编码 III 型干扰素受体的基因的小鼠进行的研究表明,该受体的信号传导对于预防流感病毒、诺如病毒和呼肠孤病毒至关重要。我们使用一种遗传方法破坏鼠 III 型干扰素细胞因子基因和,发现这些细胞因子缺失的小鼠完全再现了在缺乏的小鼠中观察到的病毒控制受损。我们的结果支持已知的 III 型干扰素细胞因子在通过 IFNLR 信号传导中发挥独特作用的观点,以介导黏膜表面的抗病毒作用。这些发现强调了 III 型干扰素在调节多种病毒病原体方面的重要性,并提供了重要的遗传证据来支持我们对该途径中配体-受体相互作用的理解。

相似文献

5
Type III interferon drives pathogenicity to via the airway epithelium.
mBio. 2024 Jul 17;15(7):e0113024. doi: 10.1128/mbio.01130-24. Epub 2024 Jun 27.
8
Interferon Lambda Signaling in Macrophages Is Necessary for the Antiviral Response to Influenza.
Front Immunol. 2021 Nov 25;12:735576. doi: 10.3389/fimmu.2021.735576. eCollection 2021.
9
Type I and Type III Interferons Differ in Their Adjuvant Activities for Influenza Vaccines.
J Virol. 2019 Nov 13;93(23). doi: 10.1128/JVI.01262-19. Print 2019 Dec 1.

引用本文的文献

1
Lipid nanoparticles as a tool to dissect dendritic cell maturation pathways.
Cell Rep. 2025 Aug 26;44(8):116150. doi: 10.1016/j.celrep.2025.116150. Epub 2025 Aug 18.
2
A single mutation in an enteric virus alters tropism and sensitivity to microbiota.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2500612122. doi: 10.1073/pnas.2500612122. Epub 2025 Apr 16.
3
Homeostatic antiviral protection of the neonatal gut epithelium by interferon lambda.
Cell Rep. 2025 Feb 25;44(2):115243. doi: 10.1016/j.celrep.2025.115243. Epub 2025 Feb 1.
4
Type III interferons induce pyroptosis in gut epithelial cells and impair mucosal repair.
Cell. 2024 Dec 26;187(26):7533-7550.e23. doi: 10.1016/j.cell.2024.10.010. Epub 2024 Nov 4.
5
Expression and function of interferon lambda receptor 1 variants.
FEBS Lett. 2025 Feb;599(4):466-475. doi: 10.1002/1873-3468.15041. Epub 2024 Oct 22.
6
Interferons and tuft cell numbers are bottlenecks for persistent murine norovirus infection.
PLoS Pathog. 2024 May 3;20(5):e1011961. doi: 10.1371/journal.ppat.1011961. eCollection 2024 May.
7
Role of type-I and type-III interferons in gastrointestinal homeostasis and pathogenesis.
Curr Opin Immunol. 2024 Feb;86:102412. doi: 10.1016/j.coi.2024.102412. Epub 2024 Mar 21.
8
Interferon lambda restricts herpes simplex virus skin disease by suppressing neutrophil-mediated pathology.
mBio. 2024 Apr 10;15(4):e0262323. doi: 10.1128/mbio.02623-23. Epub 2024 Mar 1.
10
Identification and characterization of the anti-viral interferon lambda 3 as direct target of the Epstein-Barr virus microRNA-BART7-3p.
Oncoimmunology. 2023 Nov 27;12(1):2284483. doi: 10.1080/2162402X.2023.2284483. eCollection 2023.

本文引用的文献

1
A Secreted Viral Nonstructural Protein Determines Intestinal Norovirus Pathogenesis.
Cell Host Microbe. 2019 Jun 12;25(6):845-857.e5. doi: 10.1016/j.chom.2019.04.005. Epub 2019 May 23.
2
Interactions between noroviruses, the host, and the microbiota.
Curr Opin Virol. 2019 Aug;37:1-9. doi: 10.1016/j.coviro.2019.04.001. Epub 2019 May 13.
3
Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance.
PLoS Pathog. 2018 Nov 28;14(11):e1007420. doi: 10.1371/journal.ppat.1007420. eCollection 2018 Nov.
4
CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo.
Cell Death Dis. 2018 Oct 27;9(11):1099. doi: 10.1038/s41419-018-1146-0.
6
Norovirus interactions with the commensal microbiota.
PLoS Pathog. 2018 Sep 6;14(9):e1007183. doi: 10.1371/journal.ppat.1007183. eCollection 2018 Sep.
7
CRISPR off-target analysis in genetically engineered rats and mice.
Nat Methods. 2018 Jul;15(7):512-514. doi: 10.1038/s41592-018-0011-5. Epub 2018 May 21.
9
Tropism for tuft cells determines immune promotion of norovirus pathogenesis.
Science. 2018 Apr 13;360(6385):204-208. doi: 10.1126/science.aar3799.
10
Distinct Effects of Type I and III Interferons on Enteric Viruses.
Viruses. 2018 Jan 20;10(1):46. doi: 10.3390/v10010046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验