Komza Lukasz, Samutpraphoot Polnop, Odeh Mutasem, Tang Yu-Lung, Mathew Milena, Chang Jiu, Song Hanbin, Kim Myung-Ki, Xiong Yihuang, Hautier Geoffroy, Sipahigil Alp
Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Nat Commun. 2024 Aug 13;15(1):6920. doi: 10.1038/s41467-024-51265-1.
Silicon is the ideal material for building electronic and photonic circuits at scale. Integrated photonic quantum technologies in silicon offer a promising path to scaling by leveraging advanced semiconductor manufacturing and integration capabilities. However, the lack of deterministic quantum light sources and strong photon-photon interactions in silicon poses a challenge to scalability. In this work, we demonstrate an indistinguishable photon source in silicon photonics based on an artificial atom. We show that a G center in a silicon waveguide can generate high-purity telecom-band single photons. We perform high-resolution spectroscopy and time-delayed two-photon interference to demonstrate the indistinguishability of single photons emitted from a G center in a silicon waveguide. Our results show that artificial atoms in silicon photonics can source single photons suitable for photonic quantum networks and processors.
硅是大规模构建电子和光子电路的理想材料。硅基集成光子量子技术通过利用先进的半导体制造和集成能力,为实现规模化提供了一条有前景的途径。然而,硅中缺乏确定性量子光源以及强光子 - 光子相互作用对可扩展性构成了挑战。在这项工作中,我们展示了一种基于人工原子的硅光子学中不可区分的光子源。我们表明,硅波导中的G中心可以产生高纯度的电信波段单光子。我们进行了高分辨率光谱学和延时双光子干涉实验,以证明硅波导中G中心发射的单光子的不可区分性。我们的结果表明,硅光子学中的人工原子可以产生适用于光子量子网络和处理器的单光子。