Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
Curr Biol. 2019 Oct 7;29(19):3216-3228.e9. doi: 10.1016/j.cub.2019.08.015. Epub 2019 Aug 29.
Motivations intensify over hours or days, promoting goals that are achieved in minutes or hours, causing satiety that persists for hours or days. Here we develop Drosophila courtship as a system to study these long-timescale motivational dynamics. We identify two neuronal populations engaged in a recurrent excitation loop, the output of which elevates a dopamine signal that increases the propensity to court. Electrical activity within the recurrent loop accrues with abstinence and, through the activity-dependent transcription factor CREB2, drives the production of activity-suppressing potassium channels. Loop activity is decremented by each mating to reduce subsequent courtship drive, and the inhibitory loop environment established by CREB2 during high motivation slows the reaccumulation of activity for days. Computational modeling reproduces these behavioral and physiological dynamics, generating predictions that we validate experimentally and illustrating a causal link between the motivation that drives behavior and the satiety that endures after goal achievement.
动机在数小时或数天内加剧,促进在数分钟或数小时内实现的目标,导致持续数小时或数天的饱腹感。在这里,我们开发了果蝇求偶行为作为研究这些长时尺度动机动力学的系统。我们确定了两个参与循环兴奋的神经元群体,其输出会提高多巴胺信号,从而增加求偶的可能性。循环中的电活动随着禁欲而积累,并通过活性依赖性转录因子 CREB2 驱动活性抑制钾通道的产生。每次交配都会减少循环活动,以降低随后的求偶动力,而 CREB2 在高动机期间建立的抑制性循环环境会减缓活动的重新积累数天。计算模型再现了这些行为和生理动力学,产生了我们通过实验验证的预测,并说明了驱动行为的动机与目标实现后持续的饱腹感之间的因果关系。