Suppr超能文献

基于多分支 3D 卷积神经网络的脑电运动想象分类。

A Multi-Branch 3D Convolutional Neural Network for EEG-Based Motor Imagery Classification.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2019 Oct;27(10):2164-2177. doi: 10.1109/TNSRE.2019.2938295. Epub 2019 Aug 29.

Abstract

One of the challenges in motor imagery (MI) classification tasks is finding an easy-handled electroencephalogram (EEG) representation method which can preserve not only temporal features but also spatial ones. To fully utilize the features on various dimensions of EEG, a novel MI classification framework is first introduced in this paper, including a new 3D representation of EEG, a multi-branch 3D convolutional neural network (3D CNN) and the corresponding classification strategy. The 3D representation is generated by transforming EEG signals into a sequence of 2D array which preserves spatial distribution of sampling electrodes. The multi-branch 3D CNN and classification strategy are designed accordingly for the 3D representation. Experimental evaluation reveals that the proposed framework reaches state-of-the-art classification kappa value level and significantly outperforms other algorithms by 50% decrease in standard deviation of different subjects, which shows good performance and excellent robustness on different subjects. The framework also shows great performance with only nine sampling electrodes, which can significantly enhance its practicality. Moreover, the multi-branch structure exhibits its low latency and a strong ability in mitigating overfitting issues which often occur in MI classification because of the small training dataset.

摘要

在运动想象 (MI) 分类任务中,面临的挑战之一是找到一种易于处理的脑电图 (EEG) 表示方法,这种方法不仅可以保留时间特征,还可以保留空间特征。为了充分利用 EEG 各个维度的特征,本文首先介绍了一种新的 MI 分类框架,包括 EEG 的新 3D 表示、多分支 3D 卷积神经网络 (3D CNN) 和相应的分类策略。3D 表示是通过将 EEG 信号转换为保留采样电极空间分布的 2D 数组序列生成的。多分支 3D CNN 和分类策略是针对 3D 表示设计的。实验评估表明,所提出的框架达到了最先进的分类kappa 值水平,与其他算法相比,不同受试者的标准差降低了 50%,这表明在不同受试者上具有良好的性能和出色的稳健性。该框架仅使用 9 个采样电极就能取得优异的性能,这显著提高了其实用性。此外,多分支结构表现出低延迟和减轻过拟合问题的强大能力,因为 MI 分类的训练数据集较小,过拟合问题经常发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验