Suppr超能文献

通过核壳纳米纤维递送生物活性蛋白用于半月板组织再生。

Bioactive proteins delivery through core-shell nanofibers for meniscal tissue regeneration.

机构信息

Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA; Department of Molecular Medicine, Scripps Research, La Jolla, CA.

Department of Molecular Medicine, Scripps Research, La Jolla, CA.

出版信息

Nanomedicine. 2020 Jan;23:102090. doi: 10.1016/j.nano.2019.102090. Epub 2019 Sep 4.

Abstract

Mimicking the ultrastructural morphology of the meniscus with nanofiber scaffolds, coupled with controlled growth-factor delivery to the appropriate cells, can help engineer tissue with the potential to grow, mature, and regenerate after in vivo implantation. We electrospun nanofibers encapsulating platelet-derived growth factor (PDGF-BB), which is a potent mitogen and chemoattractant in a core of serum albumin contained within a shell of polylactic acid. We controlled the local PDGF-BB release by adding water-soluble polyethylene glycol to the polylactic acid shell to serve as a porogen. The novel core-shell nanofibers generated 3D scaffolds with an interconnected macroporous structure, with appropriate mechanical properties and with high cell compatibility. Incorporating PDGF-BB increased cell viability, proliferation, and infiltration, and upregulated key genes involved in meniscal extracellular matrix synthesis in human meniscal and synovial cells. Our results support proof of concept that these core-shell nanofibers can create a cell-favorable nanoenvironment and can serve as a system for sustained release of bioactive factors.

摘要

通过模仿半月板的超微结构形态,结合对适当细胞的受控生长因子传递,有助于工程组织在体内植入后具有生长、成熟和再生的潜力。我们采用电纺丝技术将包含血小板衍生生长因子(PDGF-BB)的纳米纤维包封在内,PDGF-BB 是一种有效的有丝分裂原和趋化因子,在包含白蛋白的核心周围是聚乳酸外壳。我们通过在聚乳酸壳中添加水溶性聚乙二醇作为致孔剂来控制局部 PDGF-BB 的释放。新型的核壳纳米纤维产生了具有互穿大孔结构的 3D 支架,具有适当的机械性能和高细胞相容性。加入 PDGF-BB 可提高人半月板和滑膜细胞的细胞活力、增殖和浸润,并上调参与半月板细胞外基质合成的关键基因。我们的研究结果支持了这样一个概念,即这些核壳纳米纤维可以创造一个有利于细胞的纳米环境,并可以作为生物活性因子持续释放的系统。

相似文献

1
Bioactive proteins delivery through core-shell nanofibers for meniscal tissue regeneration.
Nanomedicine. 2020 Jan;23:102090. doi: 10.1016/j.nano.2019.102090. Epub 2019 Sep 4.
2
Core-Shell Nanofibrous Scaffolds for Repair of Meniscus Tears.
Tissue Eng Part A. 2019 Dec;25(23-24):1577-1590. doi: 10.1089/ten.TEA.2018.0319. Epub 2019 Aug 14.
3
Collagen fibrous scaffolds for sustained delivery of growth factors for meniscal tissue engineering.
Nanomedicine (Lond). 2022 Jan;17(2):77-93. doi: 10.2217/nnm-2021-0313. Epub 2022 Jan 7.
4
Fabrication and Characterization of Core-Shell Nanofibers Using a Next-Generation Airbrush for Biomedical Applications.
ACS Appl Mater Interfaces. 2018 Dec 12;10(49):41924-41934. doi: 10.1021/acsami.8b13809. Epub 2018 Nov 28.
6
Meniscal tissue repair with nanofibers: future perspectives.
Nanomedicine (Lond). 2020 Oct;15(25):2517-2538. doi: 10.2217/nnm-2020-0183. Epub 2020 Sep 25.
7
Controlled release of multiple epidermal induction factors through core-shell nanofibers for skin regeneration.
Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):689-98. doi: 10.1016/j.ejpb.2013.06.002. Epub 2013 Jun 18.
8
Induction of cell migration in vitro by an electrospun PDGF-BB/PLGA/PEG-PLA nanofibrous scaffold.
J Biomed Nanotechnol. 2011 Dec;7(6):823-9. doi: 10.1166/jbn.2011.1342.

引用本文的文献

1
Biomolecule-releasing bioadhesive for glenoid labrum repair through induced host progenitor cell responses.
J Orthop Res. 2023 Jul;41(7):1624-1636. doi: 10.1002/jor.25494. Epub 2022 Dec 10.
3
Pneumatospinning Biomimetic Scaffolds for Meniscus Tissue Engineering.
Front Bioeng Biotechnol. 2022 Feb 2;10:810705. doi: 10.3389/fbioe.2022.810705. eCollection 2022.
4
Overcoming barriers for intra-articular delivery of disease-modifying osteoarthritis drugs.
Trends Pharmacol Sci. 2022 Mar;43(3):171-187. doi: 10.1016/j.tips.2021.12.004. Epub 2022 Jan 24.
5
Collagen fibrous scaffolds for sustained delivery of growth factors for meniscal tissue engineering.
Nanomedicine (Lond). 2022 Jan;17(2):77-93. doi: 10.2217/nnm-2021-0313. Epub 2022 Jan 7.
6
Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review.
Polymers (Basel). 2021 Dec 10;13(24):4327. doi: 10.3390/polym13244327.
7
Biomaterials and Meniscal Lesions: Current Concepts and Future Perspective.
Pharmaceutics. 2021 Nov 7;13(11):1886. doi: 10.3390/pharmaceutics13111886.
8
Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications.
Front Cell Dev Biol. 2021 Jul 13;9:661802. doi: 10.3389/fcell.2021.661802. eCollection 2021.
9
Electrospun core-shell nanofibers with encapsulated enamel matrix derivative for guided periodontal tissue regeneration.
Dent Mater J. 2021 Sep 30;40(5):1208-1216. doi: 10.4012/dmj.2020-412. Epub 2021 Jun 12.

本文引用的文献

1
Platelet-derived growth factor-coated decellularized meniscus scaffold for integrative healing of meniscus tears.
Acta Biomater. 2018 Aug;76:126-134. doi: 10.1016/j.actbio.2018.06.021. Epub 2018 Jun 14.
2
Meniscal Tissue Engineering Using Aligned Collagen Fibrous Scaffolds: Comparison of Different Human Cell Sources.
Tissue Eng Part A. 2018 Jan;24(1-2):81-93. doi: 10.1089/ten.TEA.2016.0205. Epub 2017 Jun 13.
3
Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates.
J Orthop Res. 2017 Jun;35(6):1274-1282. doi: 10.1002/jor.23211. Epub 2017 Apr 24.
4
Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells.
Tissue Eng Part A. 2016 Mar;22(5-6):436-48. doi: 10.1089/ten.TEA.2015.0284. Epub 2016 Mar 3.
5
Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs.
Osteoarthritis Cartilage. 2015 Jun;23(6):1007-17. doi: 10.1016/j.joca.2015.02.008. Epub 2015 Feb 13.
7
Transplantation of aggregates of synovial mesenchymal stem cells regenerates meniscus more effectively in a rat massive meniscal defect.
Biochem Biophys Res Commun. 2013 Jun 14;435(4):603-9. doi: 10.1016/j.bbrc.2013.05.026. Epub 2013 May 16.
9
The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration.
Biomaterials. 2012 Oct;33(28):6709-20. doi: 10.1016/j.biomaterials.2012.06.017. Epub 2012 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验