Suppr超能文献

Optshrink LR + S:使用非凸最优奇异值收缩的加速功能磁共振成像重建

Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage.

作者信息

Aggarwal Priya, Shrivastava Parth, Kabra Tanay, Gupta Anubha

机构信息

SBILab, Department of Electronics and Communication Engineering, IIIT-Delhi, New Delhi, India.

出版信息

Brain Inform. 2017 Mar;4(1):65-83. doi: 10.1007/s40708-016-0059-x. Epub 2017 Jan 10.

Abstract

This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorithm, while the sparse component has been estimated using convex l minimization. The performance of the proposed method is compared with the existing state-of-the-art algorithms on real fMRI dataset. The proposed OptShrink LR + S method yields good qualitative and quantitative results.

摘要

本文提出了一种新的加速功能磁共振成像(fMRI)重建方法,即OptShrink LR + S方法,该方法使用低秩和稀疏分量的线性组合来重建欠采样的fMRI数据。低秩分量已使用非凸最优奇异值收缩算法进行估计,而稀疏分量则使用凸l最小化进行估计。在真实的fMRI数据集上,将该方法的性能与现有的最先进算法进行了比较。所提出的OptShrink LR + S方法产生了良好的定性和定量结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6586/5319953/31ff06c350c4/40708_2016_59_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验