Chiew Mark, Graedel Nadine N, McNab Jennifer A, Smith Stephen M, Miller Karla L
FMRIB Centre, University of Oxford, Oxford, United Kingdom.
R.M. Lucas Center for Imaging, Stanford University, Stanford, California, USA.
Magn Reson Med. 2016 Dec;76(6):1825-1836. doi: 10.1002/mrm.26079. Epub 2016 Jan 17.
Recently, k-t FASTER (fMRI Accelerated in Space-time by means of Truncation of Effective Rank) was introduced for rank-constrained acceleration of fMRI data acquisition. Here we demonstrate improvements achieved through a hybrid three-dimensional radial-Cartesian sampling approach that allows posthoc selection of acceleration factors, as well as incorporation of coil sensitivity encoding in the reconstruction.
The multicoil rank-constrained reconstruction used hard thresholding and shrinkage on matrix singular values of the space-time data matrix, using sensitivity encoding and the nonuniform Fast Fourier Transform to enforce data consistency in the multicoil non-Cartesian k-t domain. Variable acceleration factors were made possible using a radial increment based on the golden ratio. Both retrospective and prospectively under-sampled data were used to assess the fidelity of the enhancements to the k-t FASTER technique in resting and task-fMRI data.
The improved k-t FASTER is capable of tailoring acceleration factors for recovery of different signal components, achieving up to R = 12.5 acceleration in visual-motor task data. The enhancements reduce data matrix reconstruction errors even at much higher acceleration factors when compared directly with the original k-t FASTER approach.
We have shown that k-t FASTER can be used to significantly accelerate fMRI data acquisition with little penalty to data quality. Magn Reson Med 76:1825-1836, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
最近,k-t FASTER(通过截断有效秩在时空上加速功能磁共振成像)被引入用于功能磁共振成像数据采集的秩约束加速。在此,我们展示了通过混合三维径向 - 笛卡尔采样方法所取得的改进,该方法允许事后选择加速因子,并在重建中纳入线圈灵敏度编码。
多线圈秩约束重建在时空数据矩阵的矩阵奇异值上使用硬阈值处理和收缩,利用灵敏度编码和非均匀快速傅里叶变换在多线圈非笛卡尔k-t域中强制数据一致性。基于黄金分割的径向增量使得可变加速因子成为可能。回顾性和前瞻性欠采样数据均用于评估在静息和任务功能磁共振成像数据中对k-t FASTER技术增强后的保真度。
改进后的k-t FASTER能够为恢复不同信号成分定制加速因子,在视觉运动任务数据中实现高达R = 12.5的加速。与原始的k-t FASTER方法直接比较时,即使在更高的加速因子下,这些增强也能减少数据矩阵重建误差。
我们已经表明,k-t FASTER可用于显著加速功能磁共振成像数据采集,而对数据质量的影响很小。《磁共振医学》76:1825 - 1836, 2016。© 2016作者。《磁共振医学》由威利期刊公司代表国际磁共振医学学会出版。这是一篇根据知识共享署名许可协议条款的开放获取文章,允许在任何媒介中使用、分发和复制,只要原始作品得到适当引用。