Suppr超能文献

RMDL:用于全玻片胃图像分类的重新校准多实例深度学习。

RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification.

机构信息

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.

Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, China.

出版信息

Med Image Anal. 2019 Dec;58:101549. doi: 10.1016/j.media.2019.101549. Epub 2019 Aug 30.

Abstract

The whole slide histopathology images (WSIs) play a critical role in gastric cancer diagnosis. However, due to the large scale of WSIs and various sizes of the abnormal area, how to select informative regions and analyze them are quite challenging during the automatic diagnosis process. The multi-instance learning based on the most discriminative instances can be of great benefit for whole slide gastric image diagnosis. In this paper, we design a recalibrated multi-instance deep learning method (RMDL) to address this challenging problem. We first select the discriminative instances, and then utilize these instances to diagnose diseases based on the proposed RMDL approach. The designed RMDL network is capable of capturing instance-wise dependencies and recalibrating instance features according to the importance coefficient learned from the fused features. Furthermore, we build a large whole-slide gastric histopathology image dataset with detailed pixel-level annotations. Experimental results on the constructed gastric dataset demonstrate the significant improvement on the accuracy of our proposed framework compared with other state-of-the-art multi-instance learning methods. Moreover, our method is general and can be extended to other diagnosis tasks of different cancer types based on WSIs.

摘要

全切片组织病理学图像(WSIs)在胃癌诊断中起着至关重要的作用。然而,由于 WSIs 的规模庞大,以及异常区域的大小各不相同,因此在自动诊断过程中,如何选择信息丰富的区域并对其进行分析是极具挑战性的。基于最具判别力实例的多实例学习对于全切片胃图像诊断非常有益。在本文中,我们设计了一种重新校准的多实例深度学习方法(RMDL)来解决这一具有挑战性的问题。我们首先选择判别实例,然后利用这些实例基于所提出的 RMDL 方法来诊断疾病。所设计的 RMDL 网络能够捕获实例之间的依赖性,并根据从融合特征中学习到的重要性系数重新校准实例特征。此外,我们构建了一个具有详细像素级注释的大型全切片胃组织病理学图像数据集。在构建的胃数据集上的实验结果表明,与其他最先进的多实例学习方法相比,我们提出的框架在准确性方面有了显著提高。此外,我们的方法具有通用性,可以扩展到基于 WSIs 的其他不同癌症类型的诊断任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验