Institute for Research in Technology/Mechanical Engineering Dept., Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain.
Institute for Research in Technology/Mechanical Engineering Dept., Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain.
Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109946. doi: 10.1016/j.msec.2019.109946. Epub 2019 Jul 4.
The reinforcement of PMMA bone cements using carbon based nanomaterials has demonstrated to be a potential solution to their poor mechanical properties. The achievement of an optimal dispersion of the nanoparticles within the polymeric matrix is a crucial but not easy stage in the production of high-quality reinforced materials. In this work, a useful route for the graphene (G) functionalisation, via silanisation with (3-methacryloxypropyl) trimethoxy silane (MPS), has been developed, providing a remarkable enhancement in dispersibility and mechanical properties. With the purpose to define the critical graphene surface oxidation parameters for an optimal silanisation, different routes were thoroughly analysed using infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results showed that the silanisation significantly improved the G dispersibility: whereas the pristine G dispersion fell down within the first 24 h, the silanised G showed an adequate stability after 5 days. Additionally, this improved dispersibility produced a notable increase in the mechanical properties of the G-reinforced bone cements: in comparison with the pristine G, the compression and bending strength of silanised G increased by 12% and by 13.7% respectively and the fracture toughness by 28%. These results provide very useful information on the relevance that the characteristics of the superficial oxidation of graphene have on the effectiveness of the silanisation process, besides an interesting functionalisation procedure for advanced dispersion and reinforcement of G-PMMA bone cements.
使用基于碳的纳米材料增强 PMMA 骨水泥已被证明是改善其机械性能的一种有潜力的方法。在生产高质量增强材料时,实现纳米颗粒在聚合物基体中的最佳分散是一个关键但不容易的阶段。在这项工作中,通过(3-丙烯酰氧基丙基)三甲氧基硅烷(MPS)硅烷化,开发了一种有用的石墨烯(G)功能化途径,提供了显著增强的分散性和机械性能。为了确定最佳硅烷化的临界石墨烯表面氧化参数,使用傅里叶变换红外光谱(FTIR)、热重分析(TGA)、X 射线光电子能谱(XPS)和扫描电子显微镜(SEM)对不同途径进行了深入分析。结果表明,硅烷化显著改善了 G 的分散性:而原始 G 的分散性在最初的 24 小时内下降,硅烷化 G 在 5 天后显示出适当的稳定性。此外,这种改善的分散性显著提高了 G 增强骨水泥的机械性能:与原始 G 相比,硅烷化 G 的压缩强度和弯曲强度分别提高了 12%和 13.7%,断裂韧性提高了 28%。这些结果提供了非常有用的信息,说明石墨烯表面氧化特性对硅烷化过程有效性的重要性,此外还提供了一种有趣的功能化方法,用于先进的 G-PMMA 骨水泥的分散和增强。