Suppr超能文献

深度可分离卷积神经网络-长短期记忆网络:一种用于癫痫识别的轻量级高效模型。

DSCNN-LSTMs: A Lightweight and Efficient Model for Epilepsy Recognition.

作者信息

Huang Zhentao, Ma Yahong, Wang Rongrong, Yuan Baoxi, Jiang Rui, Yang Qin, Li Weisu, Sun Jingbo

机构信息

School of Electronic Information, Xijing University, Xi'an 710123, China.

出版信息

Brain Sci. 2022 Dec 5;12(12):1672. doi: 10.3390/brainsci12121672.

Abstract

Epilepsy is the second most common disease of the nervous system. Because of its high disability rate and the long course of the disease, it is a worldwide medical problem and social public health problem. Therefore, the timely detection and treatment of epilepsy are very important. Currently, medical professionals use their own diagnostic experience to identify seizures by visual inspection of the electroencephalogram (EEG). Not only does it require a lot of time and effort, but the process is also very cumbersome. Machine learning-based methods have recently been proposed for epilepsy detection, which can help clinicians make rapid and correct diagnoses. However, these methods often require extracting the features of EEG signals before using the data. In addition, the selection of features often requires domain knowledge, and feature types also have a significant impact on the performance of the classifier. In this paper, a one-dimensional depthwise separable convolutional neural network and long short-term memory networks (1D DSCNN-LSTMs) model is proposed to identify epileptic seizures by autonomously extracting the features of raw EEG. On the UCI dataset, the performance of the proposed 1D DSCNN-LSTMs model is verified by cross-validation and time complexity comparison. Compared with other previous models, the experimental results show that the highest recognition rates of binary and quintuple classification are 99.57% and 81.30%, respectively. It can be concluded that the 1D DSCNN-LSTMs model proposed in this paper is an effective method to identify seizures based on EEG signals.

摘要

癫痫是第二常见的神经系统疾病。由于其高致残率和病程长,它是一个全球性的医学问题和社会公共卫生问题。因此,癫痫的及时检测和治疗非常重要。目前,医学专业人员凭借自己的诊断经验通过目视检查脑电图(EEG)来识别癫痫发作。这不仅需要大量时间和精力,而且过程也非常繁琐。最近有人提出基于机器学习的方法用于癫痫检测,这可以帮助临床医生做出快速且正确的诊断。然而,这些方法在使用数据之前通常需要提取EEG信号的特征。此外,特征的选择往往需要领域知识,并且特征类型对分类器的性能也有重大影响。本文提出了一种一维深度可分离卷积神经网络和长短期记忆网络(1D DSCNN-LSTMs)模型,通过自动提取原始EEG的特征来识别癫痫发作。在UCI数据集上,通过交叉验证和时间复杂度比较验证了所提出的1D DSCNN-LSTMs模型的性能。与之前的其他模型相比,实验结果表明二元分类和五元分类的最高识别率分别为99.57%和81.30%。可以得出结论,本文提出的1D DSCNN-LSTMs模型是一种基于EEG信号识别癫痫发作的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e0/9775067/396476aa534c/brainsci-12-01672-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验