Suppr超能文献

基于影像组学的多模态和多参数建模的机器学习

Machine learning for radiomics-based multimodality and multiparametric modeling.

作者信息

Wei Lise, Osman Sarah, Hatt Mathieu, El Naqa Issam

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.

Centre for Cancer Research and Cell Biology, Queens' University, Belfast, UK.

出版信息

Q J Nucl Med Mol Imaging. 2019 Dec;63(4):323-338. doi: 10.23736/S1824-4785.19.03213-8. Epub 2019 Sep 13.

Abstract

Due to the recent developments of both hardware and software technologies, multimodality medical imaging techniques have been increasingly applied in clinical practice and research studies. Previously, the application of multimodality imaging in oncology has been mainly related to combining anatomical and functional imaging to improve diagnostic specificity and/or target definition, such as positron emission tomography/computed tomography (PET/CT) and single-photon emission CT (SPECT)/CT. More recently, the fusion of various images, such as multiparametric magnetic resonance imaging (MRI) sequences, different PET tracer images, PET/MRI, has become more prevalent, which has enabled more comprehensive characterization of the tumor phenotype. In order to take advantage of these valuable multimodal data for clinical decision making using radiomics, we present two ways to implement the multimodal image analysis, namely radiomic (handcrafted feature) based and deep learning (machine learned feature) based methods. Applying advanced machine (deep) learning algorithms across multimodality images have shown better results compared with single modality modeling for prognostic and/or prediction of clinical outcomes. This holds great potentials for providing more personalized treatment for patients and achieve better outcomes.

摘要

由于硬件和软件技术的最新发展,多模态医学成像技术已越来越多地应用于临床实践和研究中。以前,多模态成像在肿瘤学中的应用主要是将解剖学成像和功能成像相结合,以提高诊断特异性和/或靶区定义,如正电子发射断层扫描/计算机断层扫描(PET/CT)和单光子发射计算机断层扫描(SPECT)/CT。最近,各种图像的融合,如多参数磁共振成像(MRI)序列、不同的PET示踪剂图像、PET/MRI,变得更加普遍,这使得对肿瘤表型的更全面表征成为可能。为了利用这些有价值的多模态数据通过影像组学进行临床决策,我们提出了两种实现多模态图像分析的方法,即基于影像组学(手工特征)的方法和基于深度学习(机器学习特征)的方法。与单模态建模相比,在多模态图像上应用先进的机器(深度)学习算法在预后和/或临床结果预测方面显示出更好的效果。这为为患者提供更个性化的治疗并取得更好的结果具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验