Suppr超能文献

儿科肿瘤学营养研究中的大数据:现状与发展框架

Big Data for Nutrition Research in Pediatric Oncology: Current State and Framework for Advancement.

作者信息

Phillips Charles A, Pollock Brad H

机构信息

Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA.

Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.

出版信息

J Natl Cancer Inst Monogr. 2019 Sep 1;2019(54):127-131. doi: 10.1093/jncimonographs/lgz019.

Abstract

Recognition and treatment of malnutrition in pediatric oncology patients is crucial because it is associated with increased morbidity and mortality. Nutrition-relevant data collected from cancer clinical trials and nutrition-specific studies are insufficient to drive high-impact nutrition research without augmentation from additional data sources. To date, clinical big data resources are underused for nutrition research in pediatric oncology. Health-care big data can be broadly subclassified into three clinical data categories: administrative, electronic health record (including clinical data research networks and learning health systems), and mobile health. Along with -omics data, each has unique applications and limitations. We summarize the potential use of clinical big data to drive pediatric oncology nutrition research and identify key scientific gaps. A framework for advancement of big data utilization for pediatric oncology nutrition research is presented and focuses on transdisciplinary teams, data interoperability, validated cohort curation, data repurposing, and mobile health applications.

摘要

识别和治疗儿科肿瘤患者的营养不良至关重要,因为这与发病率和死亡率的增加有关。从癌症临床试验和营养专项研究中收集的营养相关数据不足以推动具有重大影响的营养研究,而无需其他数据源的补充。迄今为止,临床大数据资源在儿科肿瘤学营养研究中未得到充分利用。医疗保健大数据可大致细分为三类临床数据:管理数据、电子健康记录(包括临床数据研究网络和学习健康系统)以及移动健康数据。与组学数据一样,每类数据都有独特的应用和局限性。我们总结了临床大数据在推动儿科肿瘤学营养研究方面的潜在用途,并确定了关键的科学差距。本文提出了一个推进儿科肿瘤学营养研究大数据利用的框架,该框架侧重于跨学科团队、数据互操作性、经过验证的队列管理、数据再利用以及移动健康应用。

相似文献

1
Big Data for Nutrition Research in Pediatric Oncology: Current State and Framework for Advancement.
J Natl Cancer Inst Monogr. 2019 Sep 1;2019(54):127-131. doi: 10.1093/jncimonographs/lgz019.
2
The Impact of Big Data Research on Practice, Policy, and Cancer Care.
Am Soc Clin Oncol Educ Book. 2019 Jan;39:e167-e175. doi: 10.1200/EDBK_238057. Epub 2019 May 17.
3
Using big data in pediatric oncology: Current applications and future directions.
Semin Oncol. 2020 Feb;47(1):56-64. doi: 10.1053/j.seminoncol.2020.02.006. Epub 2020 Feb 29.
4
Big Data in Cancer Research: Real-World Resources for Precision Oncology to Improve Cancer Care Delivery.
Semin Radiat Oncol. 2019 Oct;29(4):306-310. doi: 10.1016/j.semradonc.2019.05.002.
5
Using Big Data and Predictive Analytics to Determine Patient Risk in Oncology.
Am Soc Clin Oncol Educ Book. 2019 Jan;39:e53-e58. doi: 10.1200/EDBK_238891. Epub 2019 May 17.
7
Utilizing big data from electronic health records in pediatric clinical care.
Pediatr Res. 2023 Jan;93(2):382-389. doi: 10.1038/s41390-022-02343-x. Epub 2022 Nov 24.
9
Big Data From Small Devices: The Future of Smartphones in Oncology.
Semin Radiat Oncol. 2019 Oct;29(4):338-347. doi: 10.1016/j.semradonc.2019.05.008.
10
Using Big Data in oncology to prospectively impact clinical patient care: A proof of concept study.
J Geriatr Oncol. 2018 Nov;9(6):665-672. doi: 10.1016/j.jgo.2018.03.017. Epub 2018 Apr 17.

引用本文的文献

2
Children's Oncology Group's 2023 blueprint for research: Cancer control and supportive care.
Pediatr Blood Cancer. 2023 Sep;70 Suppl 6(Suppl 6):e30568. doi: 10.1002/pbc.30568. Epub 2023 Jul 10.
3
Diet as a Potential Moderator for Genome Stability and Immune Response in Pediatric Leukemia.
Cancers (Basel). 2021 Jan 22;13(3):413. doi: 10.3390/cancers13030413.
4
Using big data in pediatric oncology: Current applications and future directions.
Semin Oncol. 2020 Feb;47(1):56-64. doi: 10.1053/j.seminoncol.2020.02.006. Epub 2020 Feb 29.

本文引用的文献

3
Implementation of an Automated Pediatric Malnutrition Screen Using Anthropometric Measurements in the Electronic Health Record.
J Acad Nutr Diet. 2019 Aug;119(8):1243-1249. doi: 10.1016/j.jand.2018.07.014. Epub 2018 Oct 5.
4
5
Predicting Causes of Data Quality Issues in a Clinical Data Research Network.
AMIA Jt Summits Transl Sci Proc. 2018 May 18;2017:113-121. eCollection 2018.
7
PCORnet Antibiotics and Childhood Growth Study: Process for Cohort Creation and Cohort Description.
Acad Pediatr. 2018 Jul;18(5):569-576. doi: 10.1016/j.acap.2018.02.008. Epub 2018 Mar 15.
8
Creation of a pediatric mature B-cell non-Hodgkin lymphoma cohort within the Pediatric Health Information System Database.
PLoS One. 2017 Oct 23;12(10):e0186960. doi: 10.1371/journal.pone.0186960. eCollection 2017.
9
Automated identification of implausible values in growth data from pediatric electronic health records.
J Am Med Inform Assoc. 2017 Nov 1;24(6):1080-1087. doi: 10.1093/jamia/ocx037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验