Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom.
Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom.
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):11964-11969. doi: 10.1073/pnas.1805943115. Epub 2018 Oct 9.
Disordered proteins play an essential role in a wide variety of biological processes, and are often posttranslationally modified. One such protein is histone H1; its highly disordered C-terminal tail (CH1) condenses internucleosomal linker DNA in chromatin in a way that is still poorly understood. Moreover, CH1 is phosphorylated in a cell cycle-dependent manner that correlates with changes in the chromatin condensation level. Here we present a model system that recapitulates key aspects of the in vivo process, and also allows a detailed structural and biophysical analysis of the stages before and after condensation. CH1 remains disordered in the DNA-bound state, despite its nanomolar affinity. Phase-separated droplets (coacervates) form, containing higher-order assemblies of CH1/DNA complexes. Phosphorylation at three serine residues, spaced along the length of the tail, has little effect on the local properties of the condensate. However, it dramatically alters higher-order structure in the coacervate and reduces partitioning to the coacervate phase. These observations show that disordered proteins can bind tightly to DNA without a disorder-to-order transition. Importantly, they also provide mechanistic insights into how higher-order structures can be exquisitely sensitive to perturbation by posttranslational modifications, thus broadening the repertoire of mechanisms that might regulate chromatin and other macromolecular assemblies.
无序蛋白质在各种生物过程中起着至关重要的作用,并且经常被翻译后修饰。组蛋白 H1 就是这样一种蛋白质;其高度无序的 C 端尾部(CH1)以一种仍不太清楚的方式浓缩染色质中核小体连接 DNA。此外,CH1 的磷酸化方式与染色质浓缩水平的变化相关,呈细胞周期依赖性。在这里,我们提出了一个模型系统,该系统再现了体内过程的关键方面,并且还允许对凝聚前后的阶段进行详细的结构和生物物理分析。尽管 CH1 与 DNA 结合的亲和力为纳摩尔级,但它仍保持无序状态。形成相分离的液滴(凝聚物),其中包含 CH1/DNA 复合物的高级组装体。沿着尾部长度间隔分布的三个丝氨酸残基的磷酸化对凝聚物的局部性质几乎没有影响。然而,它会显著改变凝聚物中的高级结构,并减少凝聚物相的分配。这些观察结果表明,无序蛋白质可以在没有无序到有序转变的情况下与 DNA 紧密结合。重要的是,它们还为无序蛋白质提供了对翻译后修饰的高级结构如何能够高度敏感的机制见解,从而扩展了可能调节染色质和其他大分子组装的机制范围。