Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, United States of America.
Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, United States of America.
Sci Rep. 2019 Sep 25;9(1):13889. doi: 10.1038/s41598-019-50449-w.
3D bioprinting has been evolving as an important strategy for the fabrication of engineered tissues for clinical, diagnostic, and research applications. A major advantage of bioprinting is the ability to recapitulate the patient-specific tissue macro-architecture using cellular bioinks. The effectiveness of bioprinting can be significantly enhanced by incorporating the ability to preferentially organize cellular constituents within 3D constructs to mimic the intrinsic micro-architectural characteristics of native tissues. Accordingly, this work focuses on a new non-contact and label-free approach called ultrasound-assisted bioprinting (UAB) that utilizes acoustophoresis principle to align cells within bioprinted constructs. We describe the underlying process physics and develop and validate computational models to determine the effects of ultrasound process parameters (excitation mode, excitation time, frequency, voltage amplitude) on the relevant temperature, pressure distribution, and alignment time characteristics. Using knowledge from the computational models, we experimentally investigate the effect of selected process parameters (frequency, voltage amplitude) on the critical quality attributes (cellular strand width, inter-strand spacing, and viability) of MG63 cells in alginate as a model bioink system. Finally, we demonstrate the UAB of bilayered constructs with parallel (0°-0°) and orthogonal (0°-90°) cellular alignment across layers. Results of this work highlight the key interplay between the UAB process design and characteristics of aligned cellular constructs, and represent an important next step in our ability to create biomimetic engineered tissues.
3D 生物打印技术作为一种制造工程组织的重要策略,在临床、诊断和研究应用中不断发展。生物打印的一个主要优势是能够使用细胞生物墨水再现患者特异性组织的宏观结构。通过结合在 3D 构建体中优先组织细胞成分的能力,以模拟天然组织的固有微观结构特征,可以显著提高生物打印的效果。因此,这项工作集中在一种新的非接触和无标记的方法上,称为超声辅助生物打印(UAB),它利用声悬浮原理在生物打印构建体中对齐细胞。我们描述了基本的过程物理,并开发和验证了计算模型,以确定超声处理参数(激励模式、激励时间、频率、电压幅度)对相关温度、压力分布和对齐时间特性的影响。利用计算模型中的知识,我们实验研究了选定的工艺参数(频率、电压幅度)对海藻酸盐中作为模型生物墨水系统的 MG63 细胞的关键质量属性(细胞链宽度、链间间距和活力)的影响。最后,我们演示了双层构建体的 UAB,其中平行(0°-0°)和正交(0°-90°)的细胞在层间对齐。这项工作的结果强调了 UAB 工艺设计和对齐细胞构建体特征之间的关键相互作用,是我们制造仿生工程组织能力的重要下一步。