Suppr超能文献

氧化石墨烯和石墨烯增强聚甲基丙烯酸甲酯骨水泥:热性能与生物相容性评估

Graphene Oxide and Graphene Reinforced PMMA Bone Cements: Evaluation of Thermal Properties and Biocompatibility.

作者信息

Paz E, Ballesteros Y, Abenojar J, Del Real J C, Dunne N J

机构信息

Institute for Research in Technology /Mechanical Engineering Dept., Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain.

Materials Science and Engineering Department, IAAB, Materials Performance Group, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganes, Madrid, Spain.

出版信息

Materials (Basel). 2019 Sep 26;12(19):3146. doi: 10.3390/ma12193146.

Abstract

The incorporation of well-dispersed graphene oxide (GO) and graphene (G) has been demonstrated as a promising solution to improve the mechanical performance of polymethyl methacrylate (PMMA) bone cements in an attempt to enhance the long-term survival of the cemented orthopaedic implants. However, to move forward with the clinical application of graphene-based PMMA bone cements, it is necessary to ensure the incorporation of graphene-based powders do not negatively affect other fundamental properties (e.g., thermal properties and biocompatibility), which may compromise the clinical success of the implant. In this study, the effect of incorporating GO and G on thermal properties, biocompatibility, and antimicrobial activity of PMMA bone cement was investigated. Differential scanning calorimetry studies demonstrated that the extent of the polymerisation reaction, heat generation, thermal conductivity, or glass transition temperature were not significantly ( > 0.05) affected by the addition of the GO or G powders. The cell viability showed no significant difference ( > 0.05) in viability when MC3-T3 cells were exposed to the surface of G- or GO-PMMA bone cements in comparison to the control. In conclusion, this study demonstrated the incorporation of GO or G powder did not significantly influence the thermal properties or biocompatibility of PMMA bone cements, potentially allowing its clinical progression.

摘要

已证明掺入分散良好的氧化石墨烯(GO)和石墨烯(G)是一种很有前景的解决方案,可改善聚甲基丙烯酸甲酯(PMMA)骨水泥的机械性能,以提高骨水泥固定的骨科植入物的长期存活率。然而,为了推进基于石墨烯的PMMA骨水泥的临床应用,有必要确保掺入的石墨烯基粉末不会对其他基本性能(如热性能和生物相容性)产生负面影响,而这些性能可能会影响植入物的临床成功率。在本研究中,研究了掺入GO和G对PMMA骨水泥的热性能、生物相容性和抗菌活性的影响。差示扫描量热法研究表明,添加GO或G粉末对聚合反应程度、产热、热导率或玻璃化转变温度没有显著影响(>0.05)。与对照组相比,当MC3-T3细胞暴露于G-PMMA或GO-PMMA骨水泥表面时,细胞活力没有显著差异(>0.05)。总之,本研究表明掺入GO或G粉末不会显著影响PMMA骨水泥的热性能或生物相容性,这可能使其能够进入临床应用阶段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8509/6803896/9c3ca5091004/materials-12-03146-g001.jpg

相似文献

3
Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications.
Mater Sci Eng C Mater Biol Appl. 2017 Aug 1;77:1003-1011. doi: 10.1016/j.msec.2017.03.269. Epub 2017 Mar 29.
4
In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements.
J Mech Behav Biomed Mater. 2018 Jun;82:257-267. doi: 10.1016/j.jmbbm.2018.03.016. Epub 2018 Mar 15.
5
Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation.
Int J Biol Macromol. 2020 Apr 15;149:783-793. doi: 10.1016/j.ijbiomac.2020.01.300. Epub 2020 Jan 31.
6
CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response.
J Mech Behav Biomed Mater. 2021 Apr;116:104320. doi: 10.1016/j.jmbbm.2021.104320. Epub 2021 Jan 21.
9
Improved thermal properties of graphene oxide-incorporated poly(methyl methacrylate) microspheres.
J Nanosci Nanotechnol. 2012 Jul;12(7):5990-4. doi: 10.1166/jnn.2012.6344.

引用本文的文献

1
Material properties and progress in modification of hydrogel-based self-expandable poly(methyl methacrylate) bone cement.
RSC Adv. 2025 Jul 29;15(33):26959-26980. doi: 10.1039/d5ra00592b. eCollection 2025 Jul 25.
2
Mechanical Properties and Functional Assessment of PMMA Bone Cements Modified with Glassy Carbon.
J Funct Biomater. 2025 Jul 9;16(7):254. doi: 10.3390/jfb16070254.
4
Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration.
Biology (Basel). 2024 Apr 2;13(4):237. doi: 10.3390/biology13040237.
7
Bioactive graphene oxide-functionalized self-expandable hydrophilic and osteogenic nanocomposite for orthopaedic applications.
Mater Today Bio. 2022 Nov 23;18:100500. doi: 10.1016/j.mtbio.2022.100500. eCollection 2023 Feb.
9
Research on Graphene and Its Derivatives in Oral Disease Treatment.
Int J Mol Sci. 2022 Apr 25;23(9):4737. doi: 10.3390/ijms23094737.

本文引用的文献

1
Graphene and graphene oxide functionalisation with silanes for advanced dispersion and reinforcement of PMMA-based bone cements.
Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109946. doi: 10.1016/j.msec.2019.109946. Epub 2019 Jul 4.
4
Active sites on graphene-based materials as metal-free catalysts.
Chem Soc Rev. 2017 Jul 31;46(15):4501-4529. doi: 10.1039/c7cs00156h.
5
Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications.
Mater Sci Eng C Mater Biol Appl. 2017 Aug 1;77:1003-1011. doi: 10.1016/j.msec.2017.03.269. Epub 2017 Mar 29.
6
Phonons and thermal transport in graphene and graphene-based materials.
Rep Prog Phys. 2017 Mar;80(3):036502. doi: 10.1088/1361-6633/80/3/036502. Epub 2017 Jan 20.
7
Applications and toxicity of graphene family nanomaterials and their composites.
Nanotechnol Sci Appl. 2016 Mar 16;9:15-28. doi: 10.2147/NSA.S101818. eCollection 2016.
8
Radical Chain Polymerization Catalyzed by Graphene Oxide and Cooperative Hydrogen Bonding.
Macromol Rapid Commun. 2016 Jan;37(2):187-94. doi: 10.1002/marc.201500573. Epub 2015 Nov 25.
9
Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters.
ACS Nano. 2015 Jul 28;9(7):7226-36. doi: 10.1021/acsnano.5b02067. Epub 2015 Jun 25.
10
Assessment of the toxic potential of graphene family nanomaterials.
J Food Drug Anal. 2014 Mar;22(1):105-115. doi: 10.1016/j.jfda.2014.01.009. Epub 2014 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验