Suppr超能文献

帕金森病患者平衡和跌倒风险预测的测量方法:心理测量特性的系统评价。

Measures of balance and falls risk prediction in people with Parkinson's disease: a systematic review of psychometric properties.

机构信息

Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong.

Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Clin Rehabil. 2019 Dec;33(12):1949-1962. doi: 10.1177/0269215519877498. Epub 2019 Oct 1.

Abstract

OBJECTIVE

To investigate the psychometric properties of measures of balance and falls risk prediction in people with Parkinson's disease (PD).

DATA SOURCES

PubMed, Embase, CINAHL, Ovid Medline, Scopus, and Web of Science were searched from inception to August 2019.

REVIEW METHOD

Studies testing psychometric properties of measures of balance and falls risk prediction in PD were included. The four-point COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) assessed quality.

RESULTS

Eighty studies testing 68 outcome measures were reviewed; 43 measures assessed balance, 9 assessed falls risk prediction, and 16 assessed both. The measures with robust psychometric estimation with acceptable properties were the (1) Mini-Balance Evaluation Systems Test (Mini-BEST), (2) Berg Balance Scale, (3) Timed Up and Go test, (4) Falls Efficacy Scale International, and (5) Activities-Specific Balance Confidence scale. These measures assess balance and falls risk prediction at the body, structure and function level, falls risk and balance, and falls risk at the activity level. The motor examination of the Unified Parkinson's Disease Rating Scale (UPDRS-ME) with robust psychometric analysis is a condition-specific measure with acceptable properties. Except the UPDRS-ME and Mini-BESTest, the responsiveness of the other four measures has yet to be established.

CONCLUSION

Six of the 68 outcome measures have strong psychometric properties for the assessment of balance and falls risk prediction in PD. Measures assessing balance and falls risk prediction at the participatory level are limited in number with a lack of psychometric validation.

摘要

目的

研究帕金森病(PD)患者平衡和跌倒风险预测测量的心理计量学特性。

资料来源

从建库至 2019 年 8 月,检索了 PubMed、Embase、CINAHL、Ovid Medline、Scopus 和 Web of Science。

审查方法

纳入了测试 PD 患者平衡和跌倒风险预测测量的心理计量学特性的研究。采用四点共识基础的健康测量仪器选择标准(COSMIN)评估质量。

结果

共综述了 80 项研究 68 项结局指标,其中 43 项评估平衡,9 项评估跌倒风险预测,16 项评估两者。具有良好心理计量学估算和可接受特性的测量方法是(1)Mini-Balance Evaluation Systems Test(Mini-BEST),(2)Berg 平衡量表,(3)Timed Up and Go 测试,(4)Falls Efficacy Scale International,和(5)活动特异性平衡信心量表。这些测量方法评估身体、结构和功能水平的平衡和跌倒风险预测、跌倒风险和平衡以及活动水平的跌倒风险。具有良好心理计量学分析的统一帕金森病评定量表(UPDRS-ME)的运动检查是一种具有可接受特性的特异性测量方法。除了 UPDRS-ME 和 Mini-BESTest,其他四项测量的反应性尚未确定。

结论

在 68 项结局指标中,有 6 项具有评估 PD 患者平衡和跌倒风险预测的良好心理计量学特性。评估参与水平的平衡和跌倒风险预测的测量方法数量有限,缺乏心理计量学验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6e2/6826874/71b516ca9191/10.1177_0269215519877498-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验