Suppr超能文献

个体功能网络随认知状态而重新配置。

Individualized functional networks reconfigure with cognitive state.

机构信息

Department of Electrical Engineering, Yale University, New Haven, CT, 06511, USA; Yale Institute for Network Science (YINS), Yale University, New Haven, CT, 06511, USA.

Department of Electrical Engineering, Yale University, New Haven, CT, 06511, USA; Yale Institute for Network Science (YINS), Yale University, New Haven, CT, 06511, USA.

出版信息

Neuroimage. 2020 Feb 1;206:116233. doi: 10.1016/j.neuroimage.2019.116233. Epub 2019 Sep 28.

Abstract

There is extensive evidence that functional organization of the human brain varies dynamically as the brain switches between task demands, or cognitive states. This functional organization also varies across subjects, even when engaged in similar tasks. To date, the functional network organization of the brain has been considered static. In this work, we use fMRI data obtained across multiple cognitive states (task-evoked and rest conditions) and across multiple subjects, to measure state- and subject-specific functional network parcellation (the assignment of nodes to networks). Our parcellation approach provides a measure of how node-to-network assignment (NNA) changes across states and across subjects. We demonstrate that the brain's functional networks are not spatially fixed, but that many nodes change their network membership as a function of cognitive state. Such reconfigurations are highly robust and reliable to the extent that they can be used to predict cognitive state with up to 97% accuracy. Our findings suggest that if functional networks are to be defined via functional clustering of nodes, then it is essential to consider that such definitions may be fluid and cognitive-state dependent.

摘要

有大量证据表明,人类大脑的功能组织在大脑在任务需求或认知状态之间切换时会动态变化。这种功能组织在不同的受试者之间也会发生变化,即使他们从事相似的任务。迄今为止,人们一直认为大脑的功能网络组织是静态的。在这项工作中,我们使用 fMRI 数据在多个认知状态(任务诱发和休息状态)和多个受试者中进行测量,以衡量状态和受试者特定的功能网络分割(节点到网络的分配)。我们的分割方法提供了一种衡量节点到网络的分配(NNA)如何随状态和随受试者而变化的方法。我们证明,大脑的功能网络不是空间固定的,而是许多节点会随着认知状态的变化而改变其网络成员。这种重新配置非常稳健和可靠,以至于可以达到高达 97%的准确率来预测认知状态。我们的发现表明,如果要通过节点的功能聚类来定义功能网络,那么必须考虑到这种定义可能是流动的,并且依赖于认知状态。

相似文献

1
Individualized functional networks reconfigure with cognitive state.
Neuroimage. 2020 Feb 1;206:116233. doi: 10.1016/j.neuroimage.2019.116233. Epub 2019 Sep 28.
3
The Functional Relevance of Task-State Functional Connectivity.
J Neurosci. 2021 Mar 24;41(12):2684-2702. doi: 10.1523/JNEUROSCI.1713-20.2021. Epub 2021 Feb 4.
4
Large-scale intrinsic connectivity is consistent across varying task demands.
PLoS One. 2019 Apr 10;14(4):e0213861. doi: 10.1371/journal.pone.0213861. eCollection 2019.
5
Aging relates to a disproportionately weaker functional architecture of brain networks during rest and task states.
Neuroimage. 2020 Apr 1;209:116521. doi: 10.1016/j.neuroimage.2020.116521. Epub 2020 Jan 8.
6
Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.
Int J Neural Syst. 2018 Sep;28(7):1850002. doi: 10.1142/S0129065718500028. Epub 2018 Jan 25.
7
Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets.
Neuroimage. 2017 Feb 15;147:243-252. doi: 10.1016/j.neuroimage.2016.11.073. Epub 2016 Dec 1.
9
Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
J Neurosci. 2017 Aug 30;37(35):8399-8411. doi: 10.1523/JNEUROSCI.0485-17.2017. Epub 2017 Jul 31.
10
A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
Magn Reson Imaging. 2016 Feb;34(2):209-18. doi: 10.1016/j.mri.2015.10.036. Epub 2015 Oct 31.

引用本文的文献

1
Supervised brain node and network construction under voxel-level functional imaging.
Imaging Neurosci (Camb). 2025 Jun 26;3. doi: 10.1162/IMAG.a.56. eCollection 2025.
3
Geometric influences on the regional organization of the mammalian brain.
bioRxiv. 2025 Feb 1:2025.01.30.635820. doi: 10.1101/2025.01.30.635820.
4
The architecture of the human default mode network explored through cytoarchitecture, wiring and signal flow.
Nat Neurosci. 2025 Mar;28(3):654-664. doi: 10.1038/s41593-024-01868-0. Epub 2025 Jan 28.
7
Task-specific topology of brain networks supporting working memory and inhibition.
Hum Brain Mapp. 2024 Sep;45(13):e70024. doi: 10.1002/hbm.70024.
9
The Commonality and Individuality of Human Brains When Performing Tasks.
Brain Sci. 2024 Jan 25;14(2):125. doi: 10.3390/brainsci14020125.
10
Lateralized Functional Connectivity of the Sensorimotor Cortex and its Variations During Complex Visuomotor Tasks.
J Neurosci. 2024 Jan 31;44(5):e0723232023. doi: 10.1523/JNEUROSCI.0723-23.2023.

本文引用的文献

1
Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions.
J Neurophysiol. 2019 Apr 1;121(4):1513-1534. doi: 10.1152/jn.00808.2018. Epub 2019 Feb 20.
2
Sensorimotor network segregation declines with age and is linked to GABA and to sensorimotor performance.
Neuroimage. 2019 Feb 1;186:234-244. doi: 10.1016/j.neuroimage.2018.11.008. Epub 2018 Nov 9.
5
Machine Learning for Precision Psychiatry: Opportunities and Challenges.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Mar;3(3):223-230. doi: 10.1016/j.bpsc.2017.11.007. Epub 2017 Dec 6.
7
A Shared Vision for Machine Learning in Neuroscience.
J Neurosci. 2018 Feb 14;38(7):1601-1607. doi: 10.1523/JNEUROSCI.0508-17.2018. Epub 2018 Jan 26.
8
Cognitive task information is transferred between brain regions via resting-state network topology.
Nat Commun. 2017 Oct 18;8(1):1027. doi: 10.1038/s41467-017-01000-w.
9
Connectome-based Models Predict Separable Components of Attention in Novel Individuals.
J Cogn Neurosci. 2018 Feb;30(2):160-173. doi: 10.1162/jocn_a_01197. Epub 2017 Oct 17.
10
Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure.
Nat Hum Behav. 2016;1. doi: 10.1038/s41562-016-0006. Epub 2016 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验