Suppr超能文献

基于迭代自由能优化和排序编码的门控尖峰神经网络用于记忆序列中的结构学习 (INFERNO GATE)。

Gated spiking neural network using Iterative Free-Energy Optimization and rank-order coding for structure learning in memory sequences (INFERNO GATE).

机构信息

Laboratoire ETIS UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, France.

出版信息

Neural Netw. 2020 Jan;121:242-258. doi: 10.1016/j.neunet.2019.09.023. Epub 2019 Sep 25.

Abstract

We present a framework based on iterative free-energy optimization with spiking neural networks for modeling the fronto-striatal system (PFC-BG) for the generation and recall of audio memory sequences. In line with neuroimaging studies carried out in the PFC, we propose a genuine coding strategy using the gain-modulation mechanism to represent abstract sequences based solely on the rank and location of items within them. Based on this mechanism, we show that we can construct a repertoire of neurons sensitive to the temporal structure in sequences from which we can represent any novel sequences. Free-energy optimization is then used to explore and to retrieve the missing indices of the items in the correct order for executive control and compositionality. We show that the gain-modulation mechanism permits the network to be robust to variabilities and to have long-term dependencies as it implements a gated recurrent neural network. This model, called Inferno Gate, is an extension of the neural architecture Inferno standing for Iterative Free-Energy Optimization of Recurrent Neural Networks with Gating or Gain-modulation. In experiments performed with an audio database of ten thousand MFCC vectors, Inferno Gate is capable of encoding efficiently and retrieving chunks of fifty items length. We then discuss the potential of our network to model the features of working memory in the PFC-BG loop for structural learning, goal-direction and hierarchical reinforcement learning.

摘要

我们提出了一个基于迭代自由能优化和尖峰神经网络的框架,用于对额皮质-基底神经节系统(PFC-BG)进行建模,以生成和回忆音频记忆序列。与在 PFC 中进行的神经影像学研究一致,我们提出了一种真正的编码策略,使用增益调制机制仅基于序列中项目的等级和位置来表示抽象序列。基于这个机制,我们表明我们可以构建一个对序列中的时间结构敏感的神经元库,从中我们可以表示任何新的序列。然后,自由能优化用于探索和以正确的顺序检索项目的缺失索引,以实现执行控制和组合性。我们表明,增益调制机制允许网络具有鲁棒性和长期依赖性,因为它实现了门控递归神经网络。这个名为 Inferno Gate 的模型是神经网络架构 Inferno 的扩展,代表具有门控或增益调制的递归神经网络的迭代自由能优化。在使用一万个 MFCC 向量的音频数据库进行的实验中,Inferno Gate 能够有效地编码和检索五十个项目长度的块。然后,我们讨论了我们的网络对 PFC-BG 循环中工作记忆特征进行建模的潜力,用于结构学习、目标导向和分层强化学习。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验