Suppr超能文献

通过噬菌体尾部纤维突变工程改造噬菌体宿主范围并抑制细菌耐药性。

Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis.

机构信息

Synthetic Biology Group, MIT Synthetic Biology Center, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA.

Synthetic Biology Group, MIT Synthetic Biology Center, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Cell. 2019 Oct 3;179(2):459-469.e9. doi: 10.1016/j.cell.2019.09.015.

Abstract

The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic "phagebodies." We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.

摘要

抗生素耐药性感染的迅速出现促使人们对噬菌体为基础的抗菌药物越来越感兴趣。然而,细菌耐药性的获得是噬菌体疗法成功开发的一个主要问题。通过自然进化和结构建模,我们在 T3 噬菌体尾部纤维蛋白中确定了决定宿主范围的区域(HRDRs),并开发了一种高通量策略,通过定点诱变对这些区域进行基因工程改造。受抗体特异性工程的启发,这种方法在最大限度地减少对整个尾部纤维结构的破坏的同时,产生了深度的功能多样性,从而产生了合成的“噬菌体体”。我们表明,突变 HRDRs 可产生具有改变的宿主范围的噬菌体体,并且选择的噬菌体体通过防止耐药性的出现来抑制细菌在体外的长期生长,并且在使用小鼠模型时具有功能。我们预计,这种方法可以促进开发能够减缓耐药性发展的下一代抗菌药物,并可扩展到其他病毒支架,以实现广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688c/6924272/a9ebefd13ef2/nihms-1543758-f0002.jpg

相似文献

引用本文的文献

2
Synthetic Biology-Based Engineering Living Therapeutics for Antimicrobial Application.基于合成生物学的工程化活体抗菌治疗剂
Exploration (Beijing). 2025 Apr 3;5(4):e20240045. doi: 10.1002/EXP.20240045. eCollection 2025 Aug.
6

本文引用的文献

4
Extending the Host Range of Bacteriophage Particles for DNA Transduction.扩展噬菌体颗粒用于 DNA 转导的宿主范围。
Mol Cell. 2017 Jun 1;66(5):721-728.e3. doi: 10.1016/j.molcel.2017.04.025. Epub 2017 May 25.
8
More Is Better: Selecting for Broad Host Range Bacteriophages.越多越好:筛选具有广泛宿主范围的噬菌体。
Front Microbiol. 2016 Sep 8;7:1352. doi: 10.3389/fmicb.2016.01352. eCollection 2016.
10
Adapting Drug Approval Pathways for Bacteriophage-Based Therapeutics.调整基于噬菌体的治疗药物的审批途径。
Front Microbiol. 2016 Aug 3;7:1209. doi: 10.3389/fmicb.2016.01209. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验