Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA.
Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA.
Cell Chem Biol. 2019 Nov 21;26(11):1623-1629.e3. doi: 10.1016/j.chembiol.2019.09.009. Epub 2019 Oct 3.
Enzymes catalyze fundamental biochemical reactions that control cellular and organismal homeostasis. Here we present an approach for de novo biochemical pathway discovery across entire mammalian enzyme families using parallel viral transduction in mice and untargeted liquid chromatography-mass spectrometry. Applying this method to the M20 peptidases uncovers both known pathways of amino acid metabolism as well as a previously unknown CNDP2-regulated pathway for threonyl dipeptide catabolism. Ablation of CNDP2 in mice elevates threonyl dipeptides across multiple tissues, establishing the physiologic relevance of our biochemical assignments. Taken together, these data underscore the utility of parallel in vivo metabolomics for the family-wide discovery of enzymatic pathways.
酶催化控制细胞和机体动态平衡的基本生化反应。在这里,我们提出了一种使用小鼠中的平行病毒转导和非靶向液相色谱-质谱联用技术对整个哺乳动物酶家族进行从头生物化学途径发现的方法。将该方法应用于 M20 肽酶,不仅揭示了氨基酸代谢的已知途径,还揭示了以前未知的由 CNDP2 调节的苏氨酰二肽分解代谢途径。在小鼠中敲除 CNDP2 会使多种组织中的苏氨酰二肽升高,从而确定了我们生化分配的生理相关性。总之,这些数据强调了平行体内代谢组学在全家族酶途径发现中的应用。