Auger Daniel A, Zhong Xiaodong, Epstein Frederick H, Meintjes Ernesta M, Spottiswoode Bruce S
MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, Cape Town, South Africa.
J Cardiovasc Magn Reson. 2014 Jan 14;16(1):8. doi: 10.1186/1532-429X-16-8.
The most time consuming and limiting step in three dimensional (3D) cine displacement encoding with stimulated echoes (DENSE) MR image analysis is the demarcation of the left ventricle (LV) from its surrounding anatomical structures. The aim of this study is to implement a semi-automated segmentation algorithm for 3D cine DENSE CMR using a guide point model approach.
A 3D mathematical model is fitted to guide points which were interactively placed along the LV borders at a single time frame. An algorithm is presented to robustly propagate LV epicardial and endocardial surfaces of the model using the displacement information encoded in the phase images of DENSE data. The accuracy, precision and efficiency of the algorithm are tested.
The model-defined contours show good accuracy when compared to the corresponding manually defined contours as similarity coefficients Dice and Jaccard consist of values above 0.7, while false positive and false negative measures show low percentage values. This is based on a measure of segmentation error on intra- and inter-observer spatial overlap variability. The segmentation algorithm offers a 10-fold reduction in the time required to identify LV epicardial and endocardial borders for a single 3D DENSE data set.
A semi-automated segmentation method has been developed for 3D cine DENSE CMR. The algorithm allows for contouring of the first cardiac frame where blood-myocardium contrast is almost nonexistent and reduces the time required to segment a 3D DENSE data set significantly.
在三维(3D)受激回波位移编码(DENSE)磁共振成像分析中,最耗时且具局限性的步骤是将左心室(LV)与其周围解剖结构区分开来。本研究的目的是使用引导点模型方法为3D电影DENSE心脏磁共振成像(CMR)实现一种半自动分割算法。
将一个3D数学模型拟合到在单个时间帧沿左心室边界交互式放置的引导点上。提出一种算法,利用DENSE数据相位图像中编码的位移信息稳健地传播模型的左心室心外膜和心内膜表面。对该算法的准确性、精确性和效率进行测试。
与相应的手动定义轮廓相比,模型定义的轮廓显示出良好的准确性,因为相似系数Dice和Jaccard的值高于0.7,而假阳性和假阴性测量显示出较低的百分比值。这是基于对观察者内和观察者间空间重叠变异性的分割误差测量。对于单个3D DENSE数据集,分割算法将识别左心室心外膜和心内膜边界所需的时间减少了10倍。
已为3D电影DENSE CMR开发了一种半自动分割方法。该算法允许在血液 - 心肌对比度几乎不存在的第一个心脏帧进行轮廓描绘,并显著减少分割3D DENSE数据集所需的时间。