Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC H3A 1B1, Canada.
Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada.
Curr Biol. 2019 Nov 18;29(22):3825-3837.e3. doi: 10.1016/j.cub.2019.09.030. Epub 2019 Oct 31.
Separation of duplicated spindle poles is the first step in forming the mitotic spindle. Kinesin-5 crosslinks and slides anti-parallel microtubules (MTs), but it is unclear how these two activities contribute to the first steps in spindle formation. In this study, we report that in monopolar spindles, the duplicated spindle poles snap apart in a fast and irreversible step that produces a nascent bipolar spindle. Using mutations in Kinesin-5 that inhibit microtubule sliding, we show that the fast, irreversible pole separation is primarily driven by microtubule crosslinking. Electron tomography revealed microtubule pairs in monopolar spindles have short overlaps that intersect at high angles and are unsuited for ensemble Kinesin-5 sliding. However, maximal extension of a subset of anti-parallel microtubule pairs approaches the length of nascent bipolar spindles and is consistent with a Kinesin-5 crosslinking-driven transition. Nonetheless, microtubule sliding by Kinesin-5 contributes to stabilizing the nascent spindle and setting its stereotyped equilibrium length.
分离重复的纺锤极是形成有丝分裂纺锤体的第一步。驱动蛋白-5 交联和滑动的微管(MT)是反平行的,但这两种活性如何促进纺锤体形成的第一步尚不清楚。在这项研究中,我们报告说在单极纺锤体中,重复的纺锤极快速且不可逆地分离,产生了一个初生的双极纺锤体。使用抑制微管滑动的驱动蛋白-5 突变,我们表明快速、不可逆的极分离主要由微管交联驱动。电子断层扫描显示单极纺锤体中的微管对具有短的重叠,以高角度交叉,不适合集合驱动蛋白-5 滑动。然而,一组反平行微管对的最大延伸接近初生双极纺锤体的长度,与驱动蛋白-5 交联驱动的转变一致。尽管如此,驱动蛋白-5 的微管滑动有助于稳定初生纺锤体并设定其定型的平衡长度。