Suppr超能文献

从木糖生产对香豆酸的酿酒酵母的代谢工程和转录组分析。

Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose.

机构信息

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.

The Bioinformatics Centre, Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.

出版信息

Microb Cell Fact. 2019 Nov 5;18(1):191. doi: 10.1186/s12934-019-1244-4.

Abstract

BACKGROUND

Aromatic amino acids and their derivatives are valuable chemicals and are precursors for different industrially compounds. p-Coumaric acid is the main building block for complex secondary metabolites in commercial demand, such as flavonoids and polyphenols. Industrial scale production of this compound from yeast however remains challenging.

RESULTS

Using metabolic engineering and a systems biology approach, we developed a Saccharomyces cerevisiae platform strain able to produce 242 mg/L of p-coumaric acid from xylose. The same strain produced only 5.35 mg/L when cultivated with glucose as carbon source. To characterise this platform strain further, transcriptomic analysis was performed, comparing this strain's growth on xylose and glucose, revealing a strong up-regulation of the glyoxylate pathway alongside increased cell wall biosynthesis and unexpectedly a decrease in aromatic amino acid gene expression when xylose was used as carbon source.

CONCLUSIONS

The resulting S. cerevisiae strain represents a promising platform host for future production of p-coumaric using xylose as a carbon source.

摘要

背景

芳香族氨基酸及其衍生物是有价值的化学品,也是不同工业化合物的前体。对香豆酸是具有商业需求的复杂次生代谢物的主要构建块,如类黄酮和多酚。然而,从酵母中工业规模生产这种化合物仍然具有挑战性。

结果

我们使用代谢工程和系统生物学方法,开发了一种能够从木糖生产 242mg/L 对香豆酸的酿酒酵母平台菌株。当用葡萄糖作为碳源培养时,该菌株仅产生 5.35mg/L。为了进一步表征这个平台菌株,我们进行了转录组分析,比较了该菌株在木糖和葡萄糖上的生长情况,结果显示,当木糖作为碳源时,乙醛酸途径强烈上调,同时细胞壁生物合成增加,出人意料的是芳香族氨基酸基因表达下降。

结论

由此产生的酿酒酵母菌株代表了一种很有前途的平台宿主,可利用木糖作为碳源生产对香豆酸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05af/6833135/12f03a52bffb/12934_2019_1244_Fig1_HTML.jpg

相似文献

3
Rewiring carbon metabolism in yeast for high level production of aromatic chemicals.
Nat Commun. 2019 Oct 31;10(1):4976. doi: 10.1038/s41467-019-12961-5.
5
Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose.
Microb Cell Fact. 2016 Feb 1;15:24. doi: 10.1186/s12934-016-0423-9.
6
Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.
FEMS Yeast Res. 2012 Aug;12(5):582-97. doi: 10.1111/j.1567-1364.2012.00808.x. Epub 2012 Apr 30.
7
Metabolic Engineering of Saccharomyces cerevisiae for Production of Shinorine, a Sunscreen Material, from Xylose.
ACS Synth Biol. 2019 Feb 15;8(2):346-357. doi: 10.1021/acssynbio.8b00388. Epub 2019 Jan 10.

引用本文的文献

2
Transcriptomic Response Pathways of Yeast to Crucial Polyphenolic Acids in Rosmarinus Acid Biosynthesis.
Curr Microbiol. 2025 May 30;82(7):315. doi: 10.1007/s00284-025-04286-y.
4
Microbial engineering for monocyclic aromatic compounds production.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf003.
5
Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives.
Curr Issues Mol Biol. 2024 Mar 26;46(4):2884-2925. doi: 10.3390/cimb46040181.
7
Strategies for the Development of Industrial Fungal Producing Strains.
J Fungi (Basel). 2023 Aug 8;9(8):834. doi: 10.3390/jof9080834.
8
A highly efficient transcriptome-based biosynthesis of non-ethanol chemicals in Crabtree negative Saccharomyces cerevisiae.
Biotechnol Biofuels Bioprod. 2023 Mar 4;16(1):37. doi: 10.1186/s13068-023-02276-5.
10
Engineering the glyoxylate cycle for chemical bioproduction.
Front Bioeng Biotechnol. 2022 Dec 2;10:1066651. doi: 10.3389/fbioe.2022.1066651. eCollection 2022.

本文引用的文献

1
Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered .
Metab Eng Commun. 2015 Oct 31;2:132-136. doi: 10.1016/j.meteno.2015.10.001. eCollection 2015 Dec.
2
Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.
Metab Eng. 2018 Jul;48:218-232. doi: 10.1016/j.ymben.2018.06.004. Epub 2018 Jun 8.
3
Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications.
Metab Eng. 2018 Nov;50:85-108. doi: 10.1016/j.ymben.2018.04.011. Epub 2018 Apr 25.
4
Complete biosynthesis of noscapine and halogenated alkaloids in yeast.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E3922-E3931. doi: 10.1073/pnas.1721469115. Epub 2018 Apr 2.
5
Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains.
Metab Eng. 2017 Nov;44:265-272. doi: 10.1016/j.ymben.2017.10.013. Epub 2017 Oct 31.
6
The Impact of Systems Biology on Bioprocessing.
Trends Biotechnol. 2017 Dec;35(12):1156-1168. doi: 10.1016/j.tibtech.2017.08.011. Epub 2017 Oct 4.
7
Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.
Biotechnol Bioeng. 2017 Nov;114(11):2581-2591. doi: 10.1002/bit.26369. Epub 2017 Jul 27.
8
Absolute Quantification of Protein and mRNA Abundances Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast.
Cell Syst. 2017 May 24;4(5):495-504.e5. doi: 10.1016/j.cels.2017.03.003. Epub 2017 Mar 29.
9
Screening for novel genes of Saccharomyces cerevisiae involved in recombinant antibody production.
FEMS Yeast Res. 2017 Jan;17(1). doi: 10.1093/femsyr/fow104. Epub 2016 Dec 11.
10
Engineering yeast for high-level production of stilbenoid antioxidants.
Sci Rep. 2016 Nov 11;6:36827. doi: 10.1038/srep36827.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验