Suppr超能文献

使用多尺度时空模式来验证基于智能体的空间显式模型。

Using Multiple Scale Spatio-Temporal Patterns for Validating Spatially Explicit Agent-Based Models.

作者信息

Kang Jeon-Young, Aldstadt Jared

机构信息

Department of Geography, University at Buffalo, The State University of New York, Buffalo, USA.

出版信息

Int J Geogr Inf Sci. 2019;33(1):193-213. doi: 10.1080/13658816.2018.1535121. Epub 2018 Oct 19.

Abstract

Spatially explicit agent-based models (ABMs) have been widely utilized to simulate the dynamics of spatial processes that involve the interactions of individual agents. The assumptions embedded in the ABMs may be responsible for uncertainty in the model outcomes. To ensure the reliability of the outcomes in terms of their space-time patterns, model validation should be performed. In this paper, we propose the use of multiple scale spatio-temporal patterns for validating spatially explicit ABMs. We evaluated several specifications of vector-borne disease transmission models by comparing space-time patterns of model outcomes to observations at multiple scales via the sum of root mean square error (RMSE) measurement. The results indicate that specifications of the spatial configurations of residential area and immunity status of individual humans are of importance to reproduce observed patterns of dengue outbreaks at multiple space-time scales. Our approach to using multiple scale spatio-temporal patterns can help not only to understand the dynamic associations between model specifications and model outcomes, but also to validate spatially explicit ABMs.

摘要

基于智能体的空间显式模型(ABMs)已被广泛用于模拟涉及个体智能体相互作用的空间过程动态。ABMs中所包含的假设可能导致模型结果的不确定性。为确保结果在时空模式方面的可靠性,应进行模型验证。在本文中,我们提出使用多尺度时空模式来验证空间显式ABMs。我们通过均方根误差(RMSE)测量的总和,将模型结果的时空模式与多尺度观测结果进行比较,评估了几种媒介传播疾病传播模型的规格。结果表明,居民区的空间配置和个体人类的免疫状态规格对于在多个时空尺度上重现观察到的登革热暴发模式非常重要。我们使用多尺度时空模式的方法不仅有助于理解模型规格与模型结果之间的动态关联,还能验证空间显式ABMs。

相似文献

1
Using Multiple Scale Spatio-Temporal Patterns for Validating Spatially Explicit Agent-Based Models.
Int J Geogr Inf Sci. 2019;33(1):193-213. doi: 10.1080/13658816.2018.1535121. Epub 2018 Oct 19.
2
Using Multiple Scale Space-Time Patterns in Variance-Based Global Sensitivity Analysis for Spatially Explicit Agent-Based Models.
Comput Environ Urban Syst. 2019 May;75:170-183. doi: 10.1016/j.compenvurbsys.2019.02.006. Epub 2019 Feb 21.
4
Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand.
Int J Environ Res Public Health. 2011 Jan;8(1):51-74. doi: 10.3390/ijerph8010051. Epub 2010 Dec 29.
5
A spatially explicit hierarchical model to characterize population viability.
Ecol Appl. 2018 Dec;28(8):2055-2065. doi: 10.1002/eap.1794. Epub 2018 Sep 24.
8
From theory to practice in pattern-oriented modelling: identifying and using empirical patterns in predictive models.
Biol Rev Camb Philos Soc. 2021 Oct;96(5):1868-1888. doi: 10.1111/brv.12729. Epub 2021 May 12.
9
Spatio-temporal patterns of dengue in Malaysia: combining address and sub-district level.
Geospat Health. 2014 Nov;9(1):131-40. doi: 10.4081/gh.2014.11.

引用本文的文献

1
Modeling COVID-19 Outbreaks in Long-Term Care Facilities Using an Agent-Based Modeling and Simulation Approach.
Int J Environ Res Public Health. 2022 Feb 24;19(5):2635. doi: 10.3390/ijerph19052635.
3
SEASIM-NEAM: A Spatially-Explicit Agent-based SIMulator of North East Atlantic Mackerel population dynamics.
MethodsX. 2020 Aug 29;7:101044. doi: 10.1016/j.mex.2020.101044. eCollection 2020.
4
Measuring multi-spatiotemporal scale tourist destination popularity based on text granular computing.
PLoS One. 2020 Apr 9;15(4):e0228175. doi: 10.1371/journal.pone.0228175. eCollection 2020.
5
Using Multiple Scale Space-Time Patterns in Variance-Based Global Sensitivity Analysis for Spatially Explicit Agent-Based Models.
Comput Environ Urban Syst. 2019 May;75:170-183. doi: 10.1016/j.compenvurbsys.2019.02.006. Epub 2019 Feb 21.

本文引用的文献

1
Spatial-temporal transmission of influenza and its health risks in an urbanized area.
Comput Environ Urban Syst. 2010 May;34(3):204-215. doi: 10.1016/j.compenvurbsys.2010.03.004. Epub 2010 Apr 7.
4
DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics.
Int J Environ Res Public Health. 2016 Sep 15;13(9):920. doi: 10.3390/ijerph13090920.
5
Human Social Behavior and Demography Drive Patterns of Fine-Scale Dengue Transmission in Endemic Areas of Colombia.
PLoS One. 2015 Dec 14;10(12):e0144451. doi: 10.1371/journal.pone.0144451. eCollection 2015.
7
A spatial simulation model for dengue virus infection in urban areas.
BMC Infect Dis. 2014 Aug 20;14:447. doi: 10.1186/1471-2334-14-447.
8
Socially structured human movement shapes dengue transmission despite the diffusive effect of mosquito dispersal.
Epidemics. 2014 Mar;6:30-6. doi: 10.1016/j.epidem.2013.12.003. Epub 2014 Jan 8.
9
Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis.
Health Care Manag Sci. 2015 Jun;18(2):205-17. doi: 10.1007/s10729-013-9263-x. Epub 2013 Dec 27.
10
Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity.
J R Soc Interface. 2013 Jul 3;10(86):20130414. doi: 10.1098/rsif.2013.0414. Print 2013 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验