Kang Jeon-Young, Aldstadt Jared
Department of Geography, University at Buffalo, The State University of New York, Buffalo, USA.
Int J Geogr Inf Sci. 2019;33(1):193-213. doi: 10.1080/13658816.2018.1535121. Epub 2018 Oct 19.
Spatially explicit agent-based models (ABMs) have been widely utilized to simulate the dynamics of spatial processes that involve the interactions of individual agents. The assumptions embedded in the ABMs may be responsible for uncertainty in the model outcomes. To ensure the reliability of the outcomes in terms of their space-time patterns, model validation should be performed. In this paper, we propose the use of multiple scale spatio-temporal patterns for validating spatially explicit ABMs. We evaluated several specifications of vector-borne disease transmission models by comparing space-time patterns of model outcomes to observations at multiple scales via the sum of root mean square error (RMSE) measurement. The results indicate that specifications of the spatial configurations of residential area and immunity status of individual humans are of importance to reproduce observed patterns of dengue outbreaks at multiple space-time scales. Our approach to using multiple scale spatio-temporal patterns can help not only to understand the dynamic associations between model specifications and model outcomes, but also to validate spatially explicit ABMs.
基于智能体的空间显式模型(ABMs)已被广泛用于模拟涉及个体智能体相互作用的空间过程动态。ABMs中所包含的假设可能导致模型结果的不确定性。为确保结果在时空模式方面的可靠性,应进行模型验证。在本文中,我们提出使用多尺度时空模式来验证空间显式ABMs。我们通过均方根误差(RMSE)测量的总和,将模型结果的时空模式与多尺度观测结果进行比较,评估了几种媒介传播疾病传播模型的规格。结果表明,居民区的空间配置和个体人类的免疫状态规格对于在多个时空尺度上重现观察到的登革热暴发模式非常重要。我们使用多尺度时空模式的方法不仅有助于理解模型规格与模型结果之间的动态关联,还能验证空间显式ABMs。