Suppr超能文献

通过非线性稀疏编码加速动态磁共振成像

ACCELERATING DYNAMIC MAGNETIC RESONANCE IMAGING BY NONLINEAR SPARSE CODING.

作者信息

Nakarmi Ukash, Zhou Yihang, Lyu Jingyuan, Slavakis Konstantinos, Ying Leslie

机构信息

Dept. of Electrical Engineering University at Buffalo, State University of New York.

Dept. of Biomedical Engineering, University at Buffalo, State University of New York.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:510-513. doi: 10.1109/ISBI.2016.7493319. Epub 2016 Jun 16.

Abstract

Although being high-dimensional, dynamic magnetic resonance images usually lie on low-dimensional manifolds. Nonlinear models have been shown to capture well that latent low-dimensional nature of data, and can thus lead to improvements in the quality of constrained recovery algorithms. This paper advocates a novel reconstruction algorithm for dynamic magnetic resonance imaging (dMRI) based on nonlinear dictionary learned from low-spatial but high-temporal resolution images. The nonlinear dictionary is initially learned using kernel dictionary learning, and the proposed algorithm subsequently alternates between sparsity enforcement in the feature space and the data-consistency constraint in the original input space. Extensive numerical tests demonstrate that the proposed scheme is superior to popular methods that use linear dictionaries learned from the same set of training data.

摘要

尽管动态磁共振图像是高维的,但通常位于低维流形上。非线性模型已被证明能够很好地捕捉数据潜在的低维特性,从而可以提高约束恢复算法的质量。本文提出了一种基于从低空间但高时间分辨率图像中学习到的非线性字典的动态磁共振成像(dMRI)重建算法。首先使用核字典学习来学习非线性字典,然后所提出的算法在特征空间中的稀疏性增强和原始输入空间中的数据一致性约束之间交替进行。大量数值测试表明,该方案优于使用从同一组训练数据中学习到的线性字典的常用方法。

相似文献

1
ACCELERATING DYNAMIC MAGNETIC RESONANCE IMAGING BY NONLINEAR SPARSE CODING.通过非线性稀疏编码加速动态磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:510-513. doi: 10.1109/ISBI.2016.7493319. Epub 2016 Jun 16.
2
Blind compressive sensing dynamic MRI.盲压缩感知动态 MRI。
IEEE Trans Med Imaging. 2013 Jun;32(6):1132-45. doi: 10.1109/TMI.2013.2255133. Epub 2013 Mar 27.
3
Orthogonal tensor dictionary learning for accelerated dynamic MRI.基于正交张量字典学习的动态 MRI 加速。
Med Biol Eng Comput. 2019 Sep;57(9):1933-1946. doi: 10.1007/s11517-019-02005-x. Epub 2019 Jun 28.
5
Alternatively Constrained Dictionary Learning For Image Superresolution.替代约束字典学习的图像超分辨率方法。
IEEE Trans Cybern. 2014 Mar;44(3):366-77. doi: 10.1109/TCYB.2013.2256347. Epub 2013 May 2.
9
Sparse and dense hybrid representation via subspace modeling for dynamic MRI.基于子空间建模的动态磁共振成像稀疏与密集混合表示
Comput Med Imaging Graph. 2017 Mar;56:24-37. doi: 10.1016/j.compmedimag.2017.01.007. Epub 2017 Feb 5.

引用本文的文献

1
Multi-scale Unrolled Deep Learning Framework for Accelerated Magnetic Resonance Imaging.用于加速磁共振成像的多尺度展开深度学习框架
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1056-1059. doi: 10.1109/isbi45749.2020.9098684. Epub 2020 May 22.
2
Bi-Linear Modeling of Manifold-Data Geometry for Dynamic-MRI Recovery.用于动态磁共振成像恢复的流形数据几何双线性建模
Int Workshop Comput Adv Multisens Adapt Process. 2017 Dec;2017. doi: 10.1109/CAMSAP.2017.8313115. Epub 2018 Mar 12.

本文引用的文献

5
MRI temporal acceleration techniques.MRI 时间加速技术。
J Magn Reson Imaging. 2012 Sep;36(3):543-60. doi: 10.1002/jmri.23640.
8
Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.利用稀疏性和低秩结构的加速动态 MRI:k-t SLR。
IEEE Trans Med Imaging. 2011 May;30(5):1042-54. doi: 10.1109/TMI.2010.2100850. Epub 2011 Jan 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验