Suppr超能文献

用于动态磁共振成像恢复的流形数据几何双线性建模

Bi-Linear Modeling of Manifold-Data Geometry for Dynamic-MRI Recovery.

作者信息

Slavakis Konstantinos, Shetty Gaurav N, Bose Abhishek, Nakarmi Ukash, Ying Leslie

机构信息

Dept. of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14226-2500, USA.

出版信息

Int Workshop Comput Adv Multisens Adapt Process. 2017 Dec;2017. doi: 10.1109/CAMSAP.2017.8313115. Epub 2018 Mar 12.

Abstract

This paper establishes a modeling framework for data located onto or close to (unknown) smooth manifolds, embedded in Euclidean spaces, and considers its application to dynamic magnetic resonance imaging (dMRI). The framework comprises several modules: First, a set of landmark points is identified to describe concisely a data cloud formed by highly under-sampled dMRI data, and second, low-dimensional renditions of the landmark points are computed. Searching for the linear operator that decompresses low-dimensional data to high-dimensional ones, and for those combinations of landmark points which approximate the manifold data by affine patches, leads to a bi-linear model of the dMRI data, cognizant of the intrinsic data geometry. Preliminary numerical tests on synthetically generated dMRI phantoms, and comparisons with state-of-the-art reconstruction techniques, underline the rich potential of the proposed method for the recovery of highly under-sampled dMRI data.

摘要

本文建立了一个针对位于欧几里得空间中或接近(未知)光滑流形的数据的建模框架,并考虑其在动态磁共振成像(dMRI)中的应用。该框架由几个模块组成:首先,识别一组地标点以简洁地描述由高度欠采样的dMRI数据形成的数据云,其次,计算地标点的低维表示。寻找将低维数据解压缩为高维数据的线性算子,以及寻找那些通过仿射面片近似流形数据的地标点组合,会得出一个考虑了内在数据几何形状的dMRI数据双线性模型。对合成生成的dMRI体模进行的初步数值测试以及与现有最先进重建技术的比较,突出了所提出方法在恢复高度欠采样的dMRI数据方面的巨大潜力。

相似文献

1
Bi-Linear Modeling of Manifold-Data Geometry for Dynamic-MRI Recovery.
Int Workshop Comput Adv Multisens Adapt Process. 2017 Dec;2017. doi: 10.1109/CAMSAP.2017.8313115. Epub 2018 Mar 12.
2
Bi-Linear Modeling of Data Manifolds for Dynamic-MRI Recovery.
IEEE Trans Med Imaging. 2020 Mar;39(3):688-702. doi: 10.1109/TMI.2019.2934125. Epub 2019 Aug 9.
3
M-MRI: A Manifold-based Framework to Highly Accelerated Dynamic Magnetic Resonance Imaging.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:19-22. doi: 10.1109/ISBI.2017.7950458. Epub 2017 Jun 19.
4
MLS: Joint Manifold-Learning and Sparsity-Aware Framework for Highly Accelerated Dynamic Magnetic Resonance Imaging.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1213-1216. doi: 10.1109/ISBI.2018.8363789. Epub 2018 May 24.
5
A geometric framework for ensemble average propagator reconstruction from diffusion MRI.
Med Image Anal. 2019 Oct;57:89-105. doi: 10.1016/j.media.2019.06.012. Epub 2019 Jul 2.
6
A Kernel-Based Low-Rank (KLR) Model for Low-Dimensional Manifold Recovery in Highly Accelerated Dynamic MRI.
IEEE Trans Med Imaging. 2017 Nov;36(11):2297-2307. doi: 10.1109/TMI.2017.2723871. Epub 2017 Jul 5.
7
Image Set Classification Using a Distance-Based Kernel Over Affine Grassmann Manifold.
IEEE Trans Neural Netw Learn Syst. 2021 Mar;32(3):1082-1095. doi: 10.1109/TNNLS.2020.2980059. Epub 2021 Mar 1.
8
Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.
IEEE Trans Pattern Anal Mach Intell. 2015 Dec;37(12):2464-77. doi: 10.1109/TPAMI.2015.2414422.
9
Sampling from Determinantal Point Processes for Scalable Manifold Learning.
Inf Process Med Imaging. 2015;24:687-98. doi: 10.1007/978-3-319-19992-4_54.
10
ACCELERATING DYNAMIC MAGNETIC RESONANCE IMAGING BY NONLINEAR SPARSE CODING.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:510-513. doi: 10.1109/ISBI.2016.7493319. Epub 2016 Jun 16.

本文引用的文献

1
ACCELERATING DYNAMIC MAGNETIC RESONANCE IMAGING BY NONLINEAR SPARSE CODING.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:510-513. doi: 10.1109/ISBI.2016.7493319. Epub 2016 Jun 16.
2
M-MRI: A Manifold-based Framework to Highly Accelerated Dynamic Magnetic Resonance Imaging.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:19-22. doi: 10.1109/ISBI.2017.7950458. Epub 2017 Jun 19.
3
Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).
IEEE Trans Med Imaging. 2016 Apr;35(4):1106-15. doi: 10.1109/TMI.2015.2509245. Epub 2015 Dec 17.
4
MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2014 Aug 20;16(1):63. doi: 10.1186/s12968-014-0063-3.
5
Manifold learning based ECG-free free-breathing cardiac CINE MRI.
J Magn Reson Imaging. 2015 Jun;41(6):1521-7. doi: 10.1002/jmri.24731. Epub 2014 Aug 14.
6
Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints.
IEEE Trans Med Imaging. 2012 Sep;31(9):1809-20. doi: 10.1109/TMI.2012.2203921. Epub 2012 Jun 8.
7
k-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection.
Magn Reson Med. 2012 Jul;68(1):41-53. doi: 10.1002/mrm.23197. Epub 2011 Nov 23.
8
Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.
IEEE Trans Med Imaging. 2011 May;30(5):1042-54. doi: 10.1109/TMI.2010.2100850. Epub 2011 Jan 31.
10
An efficient method for dynamic magnetic resonance imaging.
IEEE Trans Med Imaging. 1994;13(4):677-86. doi: 10.1109/42.363100.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验