Suppr超能文献

MLS:用于高度加速动态磁共振成像的联合流形学习与稀疏感知框架

MLS: Joint Manifold-Learning and Sparsity-Aware Framework for Highly Accelerated Dynamic Magnetic Resonance Imaging.

作者信息

Nakarmi Ukash, Slavakis Konstantinos, Ying Leslie

机构信息

Department of Electrical Engineering, University at Buffalo, The State University of New York.

Department of Biomedical Engineering, University at Buffalo, The State University of New York.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1213-1216. doi: 10.1109/ISBI.2018.8363789. Epub 2018 May 24.

Abstract

Manifold-based models have been recently exploited for accelerating dynamic magnetic resonance imaging (dMRI). While manifold-based models have shown to be more efficient than conventional low-rank approaches, joint low-rank and sparsity-aware modeling still appears to be very efficient due to the inherent sparsity within dMR images. In this paper, we propose a joint manifold-learning and sparsity-aware framework for dMRI. The proposed method establishes a link between the recently developed manifold models and conventional sparsity-aware models. Dynamic MR images are modeled as points located on or close to a smooth manifold, and a novel data-driven manifold-learning approach, which preserves affine relation among images, is used to learn the low-dimensional embedding of the dynamic images. The temporal basis learnt from such an approach efficiently captures the inherent periodicity of dynamic images and hence sparsity along temporal direction is enforced during reconstruction. The proposed framework is validated by extensive numerical tests on phantom and in-vivo data sets.

摘要

基于流形的模型最近已被用于加速动态磁共振成像(dMRI)。虽然基于流形的模型已被证明比传统的低秩方法更有效,但由于dMR图像中固有的稀疏性,联合低秩和稀疏感知建模似乎仍然非常有效。在本文中,我们提出了一种用于dMRI的联合流形学习和稀疏感知框架。所提出的方法在最近开发的流形模型和传统的稀疏感知模型之间建立了联系。动态MR图像被建模为位于光滑流形上或接近光滑流形的点,并且使用一种新颖的数据驱动的流形学习方法来学习动态图像的低维嵌入,该方法保留了图像之间的仿射关系。从这种方法中学到的时间基有效地捕获了动态图像的固有周期性,因此在重建过程中沿时间方向强制稀疏性。所提出的框架通过对体模和体内数据集进行的大量数值测试得到了验证。

相似文献

1
MLS: Joint Manifold-Learning and Sparsity-Aware Framework for Highly Accelerated Dynamic Magnetic Resonance Imaging.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1213-1216. doi: 10.1109/ISBI.2018.8363789. Epub 2018 May 24.
2
M-MRI: A Manifold-based Framework to Highly Accelerated Dynamic Magnetic Resonance Imaging.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:19-22. doi: 10.1109/ISBI.2017.7950458. Epub 2017 Jun 19.
3
A Kernel-Based Low-Rank (KLR) Model for Low-Dimensional Manifold Recovery in Highly Accelerated Dynamic MRI.
IEEE Trans Med Imaging. 2017 Nov;36(11):2297-2307. doi: 10.1109/TMI.2017.2723871. Epub 2017 Jul 5.
4
Accelerated dynamic MR imaging with joint balanced low-rank tensor and sparsity constraints.
Med Phys. 2023 Sep;50(9):5434-5448. doi: 10.1002/mp.16573. Epub 2023 Jun 28.
5
Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling.
IEEE Trans Med Imaging. 2023 Jan;42(1):158-169. doi: 10.1109/TMI.2022.3207774. Epub 2022 Dec 29.
6
Bi-Linear Modeling of Manifold-Data Geometry for Dynamic-MRI Recovery.
Int Workshop Comput Adv Multisens Adapt Process. 2017 Dec;2017. doi: 10.1109/CAMSAP.2017.8313115. Epub 2018 Mar 12.
8
Synergistic PET and SENSE MR Image Reconstruction Using Joint Sparsity Regularization.
IEEE Trans Med Imaging. 2018 Jan;37(1):20-34. doi: 10.1109/TMI.2017.2691044. Epub 2017 Apr 18.
9
CS-MRI reconstruction based on analysis dictionary learning and manifold structure regularization.
Neural Netw. 2020 Mar;123:217-233. doi: 10.1016/j.neunet.2019.12.010. Epub 2019 Dec 17.
10
Bi-Linear Modeling of Data Manifolds for Dynamic-MRI Recovery.
IEEE Trans Med Imaging. 2020 Mar;39(3):688-702. doi: 10.1109/TMI.2019.2934125. Epub 2019 Aug 9.

引用本文的文献

1
Variational Manifold Learning From Incomplete Data: Application to Multislice Dynamic MRI.
IEEE Trans Med Imaging. 2022 Dec;41(12):3552-3561. doi: 10.1109/TMI.2022.3189905. Epub 2022 Dec 2.
2
Dynamic Imaging Using a Deep Generative SToRM (Gen-SToRM) Model.
IEEE Trans Med Imaging. 2021 Nov;40(11):3102-3112. doi: 10.1109/TMI.2021.3065948. Epub 2021 Oct 27.
3
Multi-scale Unrolled Deep Learning Framework for Accelerated Magnetic Resonance Imaging.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1056-1059. doi: 10.1109/isbi45749.2020.9098684. Epub 2020 May 22.

本文引用的文献

1
ACCELERATING DYNAMIC MAGNETIC RESONANCE IMAGING BY NONLINEAR SPARSE CODING.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:510-513. doi: 10.1109/ISBI.2016.7493319. Epub 2016 Jun 16.
2
M-MRI: A Manifold-based Framework to Highly Accelerated Dynamic Magnetic Resonance Imaging.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:19-22. doi: 10.1109/ISBI.2017.7950458. Epub 2017 Jun 19.
3
Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).
IEEE Trans Med Imaging. 2016 Apr;35(4):1106-15. doi: 10.1109/TMI.2015.2509245. Epub 2015 Dec 17.
4
MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2014 Aug 20;16(1):63. doi: 10.1186/s12968-014-0063-3.
5
Manifold learning based ECG-free free-breathing cardiac CINE MRI.
J Magn Reson Imaging. 2015 Jun;41(6):1521-7. doi: 10.1002/jmri.24731. Epub 2014 Aug 14.
6
MRI temporal acceleration techniques.
J Magn Reson Imaging. 2012 Sep;36(3):543-60. doi: 10.1002/jmri.23640.
7
Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints.
IEEE Trans Med Imaging. 2012 Sep;31(9):1809-20. doi: 10.1109/TMI.2012.2203921. Epub 2012 Jun 8.
8
k-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection.
Magn Reson Med. 2012 Jul;68(1):41-53. doi: 10.1002/mrm.23197. Epub 2011 Nov 23.
9
Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.
IEEE Trans Med Imaging. 2011 May;30(5):1042-54. doi: 10.1109/TMI.2010.2100850. Epub 2011 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验