Suppr超能文献

在生态学中应用深度学习:预测树皮甲虫爆发的一个实例

Harnessing Deep Learning in Ecology: An Example Predicting Bark Beetle Outbreaks.

作者信息

Rammer Werner, Seidl Rupert

机构信息

Department of Forest and Soil Sciences, Institute of Silviculture, University of Natural Resources and Life Sciences (BOKU) Vienna, Vienna, Austria.

出版信息

Front Plant Sci. 2019 Oct 28;10:1327. doi: 10.3389/fpls.2019.01327. eCollection 2019.

Abstract

Addressing current global challenges such as biodiversity loss, global change, and increasing demands for ecosystem services requires improved ecological prediction. Recent increases in data availability, process understanding, and computing power are fostering quantitative approaches in ecology. However, flexible methodological frameworks are needed to utilize these developments towards improved ecological prediction. Deep learning is a rapidly evolving branch of machine learning, yet has received only little attention in ecology to date. It refers to the training of deep neural networks (DNNs), i.e. artificial neural networks consisting of many layers and a large number of neurons. We here provide a reproducible example (including code and data) of designing, training, and applying DNNs for ecological prediction. Using bark beetle outbreaks in conifer-dominated forests as an example, we show that DNNs are well able to predict both short-term infestation risk at the local scale and long-term outbreak dynamics at the landscape level. We furthermore highlight that DNNs have better overall performance than more conventional approaches to predicting bark beetle outbreak dynamics. We conclude that DNNs have high potential to form the backbone of a comprehensive disturbance forecasting system. More broadly, we argue for an increased utilization of the predictive power of DNNs for a wide range of ecological problems.

摘要

应对当前诸如生物多样性丧失、全球变化以及对生态系统服务需求不断增加等全球挑战,需要改进生态预测。近期数据可得性、过程理解和计算能力的提升正在推动生态学中的定量方法发展。然而,需要灵活的方法框架来利用这些进展以改进生态预测。深度学习是机器学习中一个快速发展的分支,但迄今为止在生态学中受到的关注甚少。它指的是深度神经网络(DNN)的训练,即由许多层和大量神经元组成的人工神经网络。我们在此提供一个用于生态预测的设计、训练和应用深度神经网络的可重现示例(包括代码和数据)。以针叶林为主的森林中树皮甲虫爆发为例,我们表明深度神经网络能够很好地预测局部尺度的短期侵染风险以及景观层面的长期爆发动态。我们还强调,深度神经网络在预测树皮甲虫爆发动态方面比更传统的方法具有更好的整体性能。我们得出结论,深度神经网络有很大潜力成为综合干扰预测系统的骨干。更广泛地说,我们主张更多地利用深度神经网络的预测能力来解决广泛的生态问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验