Biophotonics Lab, Department of Bioengineering & Biotechnology, Birla Institute of Technology-Mesra, Ranchi, JH, 835 215, India.
Med Biol Eng Comput. 2024 May;62(5):1375-1393. doi: 10.1007/s11517-023-03007-6. Epub 2024 Jan 9.
The posterior segment of the human eye complex contains two discrete microstructure and vasculature network systems, namely, the retina and choroid. We present a single segmentation framework technique for segmenting the entire layers present in the chorio-retinal complex of the human eye using optical coherence tomography (OCT) images. This automatic program is based on the graph theory method. This single program is capable of segmenting seven layers of the retina and choroid scleral interface. The graph theory was utilized to find the probability matrix and subsequent boundaries of different layers. The program was also implemented to segment angiographic maps of different chorio-retinal layers using "segmentation matrices." The method was tested and successfully validated on OCT images from six normal human eyes as well as eyes with non-exudative age-related macular degeneration (AMD). The thickness of microstructure and microvasculature for different layers located in the chorio-retinal segment of the eye was also generated and compared. A decent efficiency in terms of processing time, sensitivity, and accuracy was observed compared to the manual segmentation and other existing methods. The proposed method automatically segments whole OCT images of chorio-retinal complex with augmented probability maps generation in OCT volume dataset. We have also evaluated the segmentation results using quantitative metrics such as Dice coefficient and Hausdorff distance This method realizes a mean descent Dice similarity coefficient (DSC) value of 0.82 (range, 0.816-0.864) for RPE and CSI layer.
人眼的后节包含两个离散的微观结构和血管网络系统,即视网膜和脉络膜。我们提出了一种基于光学相干断层扫描(OCT)图像的单一分割框架技术,用于分割人眼的脉络膜-视网膜复合层的所有层。该自动程序基于图论方法。该单一程序能够分割视网膜和脉络膜巩膜界面的七层。利用图论来寻找不同层的概率矩阵和随后的边界。该程序还被实现为使用“分割矩阵”来分割不同脉络膜-视网膜层的血管造影图。该方法在来自六只正常人和六只患有非渗出性年龄相关性黄斑变性(AMD)的人眼的 OCT 图像上进行了测试和成功验证。还生成并比较了位于眼脉络膜-视网膜段的不同层的微观结构和微血管的厚度。与手动分割和其他现有方法相比,该方法在处理时间、灵敏度和准确性方面具有较高的效率。该方法在 OCT 体数据集的增强概率图生成中自动分割脉络膜-视网膜复合体的整个 OCT 图像。我们还使用定量指标(如 Dice 系数和 Hausdorff 距离)评估了分割结果。该方法实现了 RPE 和 CSI 层的平均下降 Dice 相似系数(DSC)值为 0.82(范围为 0.816-0.864)。