Division of Biostatistics, University of California, Berkeley, CA, USA.
Biometrics. 2020 Sep;76(3):722-733. doi: 10.1111/biom.13172. Epub 2019 Nov 28.
Researchers in observational survival analysis are interested in not only estimating survival curve nonparametrically but also having statistical inference for the parameter. We consider right-censored failure time data where we observe n independent and identically distributed observations of a vector random variable consisting of baseline covariates, a binary treatment at baseline, a survival time subject to right censoring, and the censoring indicator. We assume the baseline covariates are allowed to affect the treatment and censoring so that an estimator that ignores covariate information would be inconsistent. The goal is to use these data to estimate the counterfactual average survival curve of the population if all subjects are assigned the same treatment at baseline. Existing observational survival analysis methods do not result in monotone survival curve estimators, which is undesirable and may lose efficiency by not constraining the shape of the estimator using the prior knowledge of the estimand. In this paper, we present a one-step Targeted Maximum Likelihood Estimator (TMLE) for estimating the counterfactual average survival curve. We show that this new TMLE can be executed via recursion in small local updates. We demonstrate the finite sample performance of this one-step TMLE in simulations and an application to a monoclonal gammopathy data.
观察性生存分析的研究人员不仅有兴趣对生存曲线进行非参数估计,而且有兴趣对参数进行统计推断。我们考虑右删失失效时间数据,其中我们观察到 n 个独立同分布的向量随机变量的观测值,该向量随机变量由基线协变量、基线处的二分类处理、受右删失影响的生存时间以及删失指示符组成。我们假设基线协变量可以影响处理和删失,因此忽略协变量信息的估计量将是不一致的。目标是使用这些数据来估计如果所有受试者在基线时都接受相同的处理,那么人群的反事实平均生存曲线。现有的观察性生存分析方法不会产生单调的生存曲线估计量,这是不可取的,并且可能会因不利用估计量的先验知识来约束估计量的形状而导致效率降低。在本文中,我们提出了一种用于估计反事实平均生存曲线的一步靶向最大似然估计器(TMLE)。我们证明了这种新的 TMLE 可以通过递归在小的局部更新中执行。我们在模拟和单克隆丙种球蛋白病数据的应用中展示了这种一步 TMLE 的有限样本性能。