Suppr超能文献

通过有针对性的极大似然估计估计连续分布的时间事件结局的时间特异性干预效果。

Estimation of time-specific intervention effects on continuously distributed time-to-event outcomes by targeted maximum likelihood estimation.

机构信息

Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark.

Division of Biostatistics, University of California, Berkeley, California, USA.

出版信息

Biometrics. 2023 Dec;79(4):3038-3049. doi: 10.1111/biom.13856. Epub 2023 Apr 19.

Abstract

This work considers targeted maximum likelihood estimation (TMLE) of treatment effects on absolute risk and survival probabilities in classical time-to-event settings characterized by right-censoring and competing risks. TMLE is a general methodology combining flexible ensemble learning and semiparametric efficiency theory in a two-step procedure for substitution estimation of causal parameters. We specialize and extend the continuous-time TMLE methods for competing risks settings, proposing a targeting algorithm that iteratively updates cause-specific hazards to solve the efficient influence curve equation for the target parameter. As part of the work, we further detail and implement the recently proposed highly adaptive lasso estimator for continuous-time conditional hazards with L -penalized Poisson regression. The resulting estimation procedure benefits from relying solely on very mild nonparametric restrictions on the statistical model, thus providing a novel tool for machine-learning-based semiparametric causal inference for continuous-time time-to-event data. We apply the methods to a publicly available dataset on follicular cell lymphoma where subjects are followed over time until disease relapse or death without relapse. The data display important time-varying effects that can be captured by the highly adaptive lasso. In our simulations that are designed to imitate the data, we compare our methods to a similar approach based on random survival forests and to the discrete-time TMLE.

摘要

这项工作考虑了针对具有右删失和竞争风险的经典事件时间设置中绝对风险和生存概率的靶向最大似然估计(TMLE)。TMLE 是一种通用方法,它将灵活的集成学习和半参数效率理论结合在两步替换估计因果参数的过程中。我们专门针对竞争风险设置扩展了连续时间 TMLE 方法,提出了一种靶向算法,该算法迭代更新特定原因的风险,以解决目标参数的有效影响曲线方程。作为这项工作的一部分,我们进一步详细介绍并实现了最近提出的具有 L 惩罚泊松回归的连续时间条件风险的高度自适应套索估计。由此产生的估计过程仅依赖于对统计模型的非常温和的非参数限制,从而为基于机器学习的连续时间事件时间数据的半参数因果推理提供了一种新工具。我们将这些方法应用于滤泡性细胞淋巴瘤的公开可用数据集,其中受试者随着时间的推移一直随访,直到疾病复发或无复发死亡。该数据显示了可以通过高度自适应套索捕获的重要时变效应。在旨在模仿数据的模拟中,我们将我们的方法与基于随机生存森林的类似方法和离散时间 TMLE 进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验