Suppr超能文献

从网络视角看体象障碍和重度抑郁症。

A network perspective on body dysmorphic disorder and major depressive disorder.

机构信息

Massachusetts General Hospital, Harvard Medical School, United States.

University of Amsterdam, Netherlands.

出版信息

J Affect Disord. 2020 Feb 1;262:165-173. doi: 10.1016/j.jad.2019.11.011. Epub 2019 Nov 5.

Abstract

BACKGROUND

Body dysmorphic disorder (BDD) is a highly debilitating mental disorder associated with notable psychosocial impairment and high rates of suicidality. This study investigated BDD from a network perspective, which conceptualizes mental disorders as systems of symptoms that cause and exacerbate one another (e.g., preoccupation with perceived appearance defect triggering compulsive checking in the mirror).

METHODS

In a sample of BDD patients (N = 148), we used cross-sectional network models to explore the network structure of 1) BDD symptoms and 2) BDD symptoms and major depressive disorder (MDD) symptoms, and tested which symptoms were most central (i.e., most strongly associated to other symptoms).

RESULTS

Interference in functioning due to appearance-related compulsions (BDD), feelings of worthlessness (MDD), and loss of pleasure (MDD) were most central.

CONCLUSION

These symptoms were most strongly predictive of other BDD and MDD symptoms and may be features of BDD that warrant prioritization in theory development and treatment. A limitation of our study is that the precision of these findings may be limited due to a small sample size relative to the number of parameters. Replication studies in larger samples of BDD patients are needed.

摘要

背景

躯体变形障碍(BDD)是一种高度使人衰弱的精神障碍,与显著的社会心理障碍和高自杀率有关。本研究从网络的角度研究 BDD,将精神障碍概念化为症状系统,这些症状相互引发和加重(例如,对感知到的外表缺陷的关注引发强迫性照镜子检查)。

方法

在 BDD 患者样本(N=148)中,我们使用横断面网络模型来探讨 1)BDD 症状和 2)BDD 症状和重度抑郁症(MDD)症状的网络结构,并测试哪些症状最为核心(即与其他症状的关联最强)。

结果

由于外表相关的强迫(BDD)、无价值感(MDD)和快感丧失(MDD)而导致的功能障碍最为核心。

结论

这些症状对其他 BDD 和 MDD 症状最具预测性,可能是 BDD 的特征,在理论发展和治疗中值得优先考虑。本研究的局限性在于,相对于参数数量,小样本量可能会限制这些发现的准确性。需要在更大的 BDD 患者样本中进行复制研究。

相似文献

1
A network perspective on body dysmorphic disorder and major depressive disorder.从网络视角看体象障碍和重度抑郁症。
J Affect Disord. 2020 Feb 1;262:165-173. doi: 10.1016/j.jad.2019.11.011. Epub 2019 Nov 5.

引用本文的文献

6
Modeling the onset of a depressive episode: A self-regulation perspective.抑郁发作的发病机制建模:自我调节视角。
Curr Opin Psychol. 2021 Oct;41:100-106. doi: 10.1016/j.copsyc.2021.04.003. Epub 2021 Apr 21.
8
The network structure of schema modes.模式图的网络结构。
Clin Psychol Psychother. 2021 Sep;28(5):1065-1078. doi: 10.1002/cpp.2577. Epub 2021 Mar 11.

本文引用的文献

1
What do centrality measures measure in psychological networks?中心度测度在心理网络中衡量什么?
J Abnorm Psychol. 2019 Nov;128(8):892-903. doi: 10.1037/abn0000446. Epub 2019 Jul 18.
2
Bridge Centrality: A Network Approach to Understanding Comorbidity.桥中心度:一种理解共病的网络方法。
Multivariate Behav Res. 2021 Mar-Apr;56(2):353-367. doi: 10.1080/00273171.2019.1614898. Epub 2019 Jun 10.
5
The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.横截面和时间序列数据中的高斯图模型。
Multivariate Behav Res. 2018 Jul-Aug;53(4):453-480. doi: 10.1080/00273171.2018.1454823. Epub 2018 Apr 16.
8
Commentary: A network theory of mental disorders.评论:精神障碍的网络理论
Front Psychol. 2017 Aug 2;8:1305. doi: 10.3389/fpsyg.2017.01305. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验