Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China.
Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA; Alto Neuroscience, Inc., Los Altos, CA 94022, USA.
Cell Rep Med. 2024 Jan 16;5(1):101347. doi: 10.1016/j.xcrm.2023.101347. Epub 2023 Dec 26.
Craving is central to methamphetamine use disorder (MUD) and both characterizes the disease and predicts relapse. However, there is currently a lack of robust and reliable biomarkers for monitoring craving and diagnosing MUD. Here, we seek to identify a neurobiological signature of craving based on individual-level functional connectivity pattern differences between healthy control and MUD subjects. We train high-density electroencephalography (EEG)-based models using data recorded during the resting state and then calculate imaginary coherence features between the band-limited time series across different brain regions of interest. Our prediction model demonstrates that eyes-open beta functional connectivity networks have significant predictive value for craving at the individual level and can also identify individuals with MUD. These findings advance the neurobiological understanding of craving through an EEG-tailored computational model of the brain connectome. Dissecting neurophysiological features provides a clinical avenue for personalized treatment of MUD.
craving 是甲基苯丙胺使用障碍(MUD)的核心,既能描述该疾病,又能预测复发。然而,目前缺乏用于监测 craving 和诊断 MUD 的强大而可靠的生物标志物。在这里,我们试图根据健康对照和 MUD 受试者之间个体水平功能连接模式差异,确定 craving 的神经生物学特征。我们使用静息状态期间记录的数据来训练基于高密度脑电图(EEG)的模型,然后计算不同感兴趣脑区之间带限时间序列之间的想象相干特征。我们的预测模型表明,睁眼时β功能连接网络对个体水平的 craving 具有显著的预测价值,并且还可以识别出患有 MUD 的个体。这些发现通过大脑连接组的 EEG 定制计算模型,推进了对 craving 的神经生物学理解。剖析神经生理特征为 MUD 的个性化治疗提供了临床途径。
Cell Rep Med. 2024-1-16
Basic Clin Neurosci. 2025
Cell Rep Med. 2024-2-20
2025-1
Psychopharmacol Bull. 2024-7-8
Int J Clin Health Psychol. 2025
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024-12-25
Cell Rep Med. 2024-2-20
Nat Neurosci. 2023-2
Brain Commun. 2022-7-8
Psychopharmacology (Berl). 2021-5