Health Data Research UK, University College London, 222 Euston Road, London, NW1 2DA, UK.
Institute of Health Informatics, University College London, London, UK.
BMC Med. 2019 Nov 20;17(1):206. doi: 10.1186/s12916-019-1438-y.
Clinical guidelines and public health authorities lack recommendations on scalable approaches to defining and monitoring the occurrence and severity of bleeding in populations prescribed antithrombotic therapy.
We examined linked primary care, hospital admission and death registry electronic health records (CALIBER 1998-2010, England) of patients with newly diagnosed atrial fibrillation, acute myocardial infarction, unstable angina or stable angina with the aim to develop algorithms for bleeding events. Using the developed bleeding phenotypes, Kaplan-Meier plots were used to estimate the incidence of bleeding events and we used Cox regression models to assess the prognosis for all-cause mortality, atherothrombotic events and further bleeding.
We present electronic health record phenotyping algorithms for bleeding based on bleeding diagnosis in primary or hospital care, symptoms, transfusion, surgical procedures and haemoglobin values. In validation of the phenotype, we estimated a positive predictive value of 0.88 (95% CI 0.64, 0.99) for hospitalised bleeding. Amongst 128,815 patients, 27,259 (21.2%) had at least 1 bleeding event, with 5-year risks of bleeding of 29.1%, 21.9%, 25.3% and 23.4% following diagnoses of atrial fibrillation, acute myocardial infarction, unstable angina and stable angina, respectively. Rates of hospitalised bleeding per 1000 patients more than doubled from 1.02 (95% CI 0.83, 1.22) in January 1998 to 2.68 (95% CI 2.49, 2.88) in December 2009 coinciding with the increased rates of antiplatelet and vitamin K antagonist prescribing. Patients with hospitalised bleeding and primary care bleeding, with or without markers of severity, were at increased risk of all-cause mortality and atherothrombotic events compared to those with no bleeding. For example, the hazard ratio for all-cause mortality was 1.98 (95% CI 1.86, 2.11) for primary care bleeding with markers of severity and 1.99 (95% CI 1.92, 2.05) for hospitalised bleeding without markers of severity, compared to patients with no bleeding.
Electronic health record bleeding phenotyping algorithms offer a scalable approach to monitoring bleeding in the population. Incidence of bleeding has doubled in incidence since 1998, affects one in four cardiovascular disease patients, and is associated with poor prognosis. Efforts are required to tackle this iatrogenic epidemic.
临床指南和公共卫生当局缺乏关于定义和监测人群中抗血栓治疗患者出血发生和严重程度的可扩展方法的建议。
我们研究了新诊断为心房颤动、急性心肌梗死、不稳定型心绞痛或稳定性心绞痛患者的初级保健、住院和死亡登记电子健康记录(CALIBER 1998-2010,英格兰),目的是开发出血事件的算法。使用开发的出血表型,我们使用 Kaplan-Meier 图估计出血事件的发生率,我们使用 Cox 回归模型评估全因死亡率、动脉粥样硬化血栓形成事件和进一步出血的预后。
我们提出了基于初级或医院护理、症状、输血、手术程序和血红蛋白值中出血诊断的电子健康记录出血表型算法。在表型验证中,我们估计住院出血的阳性预测值为 0.88(95%CI 0.64,0.99)。在 128815 名患者中,27259 名(21.2%)至少有 1 次出血事件,分别诊断为心房颤动、急性心肌梗死、不稳定型心绞痛和稳定性心绞痛的 5 年出血风险为 29.1%、21.9%、25.3%和 23.4%。每 1000 名患者中,住院出血率从 1998 年 1 月的 1.02(95%CI 0.83,1.22)增加到 2009 年 12 月的 2.68(95%CI 2.49,2.88),与抗血小板和维生素 K 拮抗剂处方率的增加一致。与无出血的患者相比,有住院出血和初级保健出血(有或无严重程度标志物)的患者全因死亡率和动脉粥样硬化血栓形成事件的风险增加。例如,有严重程度标志物的初级保健出血的全因死亡率的危险比为 1.98(95%CI 1.86,2.11),无严重程度标志物的住院出血的危险比为 1.99(95%CI 1.92,2.05),而无出血的患者为 1.00。
电子健康记录出血表型算法为监测人群中的出血提供了一种可扩展的方法。自 1998 年以来,出血的发生率增加了一倍,影响了四分之一的心血管疾病患者,并且与预后不良有关。需要努力解决这种医源性流行。